Emily C Reed, Valeria A Silva, Kristen R Giebel, Tamara Natour, Tatlock H Lauten, Caroline N Jojo, Abigail E Schleiker, Adam J Case
{"title":"Hemoglobin alpha is a redox-sensitive mitochondrial-related protein in T-lymphocytes.","authors":"Emily C Reed, Valeria A Silva, Kristen R Giebel, Tamara Natour, Tatlock H Lauten, Caroline N Jojo, Abigail E Schleiker, Adam J Case","doi":"10.1016/j.freeradbiomed.2024.11.044","DOIUrl":null,"url":null,"abstract":"<p><p>Hemoglobin subunits, which form the well-characterized, tetrameric, oxygen-carrying protein, have recently been described to be expressed in various non-canonical cell types. However, the exact function of hemoglobin subunits within these cells remains to be fully elucidated. Herein, we report for the first time, the expression of hemoglobin alpha-a1 (Hba-a1) in T-lymphocytes and describe its role as a mitochondrial-associated antioxidant. Within naïve T-lymphocytes, Hba-a1 mRNA and HBA protein are present and highly induced by redox perturbations, particularly those arising from the mitochondria. Additionally, preliminary data using a T-lymphocyte specific Hba-a1 knock-out mouse model indicated that the loss of Hba-a1 led to an exacerbated production of mitochondrial reactive oxygen species and inflammatory cytokines after a stress challenge, further supporting the role of HBA acting to buffer the mitochondrial redox environment. Interestingly, we observed Hba-a1 expression to be significantly upregulated or downregulated depending on T-lymphocyte polarization and metabolic state, which appeared to be controlled by both transcriptional regulation and chromatin remodeling. Altogether, these data suggest Hba-a1 may function as a crucial mitochondrial-associated antioxidant and appears to possess critical and complex functions related to T-lymphocyte activation and differentiation.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2024.11.044","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hemoglobin subunits, which form the well-characterized, tetrameric, oxygen-carrying protein, have recently been described to be expressed in various non-canonical cell types. However, the exact function of hemoglobin subunits within these cells remains to be fully elucidated. Herein, we report for the first time, the expression of hemoglobin alpha-a1 (Hba-a1) in T-lymphocytes and describe its role as a mitochondrial-associated antioxidant. Within naïve T-lymphocytes, Hba-a1 mRNA and HBA protein are present and highly induced by redox perturbations, particularly those arising from the mitochondria. Additionally, preliminary data using a T-lymphocyte specific Hba-a1 knock-out mouse model indicated that the loss of Hba-a1 led to an exacerbated production of mitochondrial reactive oxygen species and inflammatory cytokines after a stress challenge, further supporting the role of HBA acting to buffer the mitochondrial redox environment. Interestingly, we observed Hba-a1 expression to be significantly upregulated or downregulated depending on T-lymphocyte polarization and metabolic state, which appeared to be controlled by both transcriptional regulation and chromatin remodeling. Altogether, these data suggest Hba-a1 may function as a crucial mitochondrial-associated antioxidant and appears to possess critical and complex functions related to T-lymphocyte activation and differentiation.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.