Magnetic domain wall and skyrmion manipulation by static and dynamic strain profiles.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2024-11-25 DOI:10.1088/1361-6528/ad96c2
Thomas A Moore
{"title":"Magnetic domain wall and skyrmion manipulation by static and dynamic strain profiles.","authors":"Thomas A Moore","doi":"10.1088/1361-6528/ad96c2","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic domain walls and skyrmions in thin film micro- and nanostructures have been of interest to a growing number of researchers since the turn of the millennium, motivated by the rich interplay of materials, interface and spin physics as well as by the potential for applications in data storage, sensing and computing. This review focuses on the manipulation of magnetic domain walls and skyrmions by piezoelectric strain, which has received increasing attention recently. Static strain profiles generated, for example, by voltage applied to a piezoelectric-ferromagnetic heterostructure, and dynamic strain profiles produced by surface acoustic waves, are reviewed here. As demonstrated by the success of magnetic random access memory, thin magnetic films have been successfully incorporated into CMOS back-end of line device fabrication. The purpose of this review is therefore not only to highlight promising piezoelectric and magnetic materials and their properties when combined, but also to galvanise interest in the spin textures in these heterostructures for a variety of spin- and straintronic devices.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad96c2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic domain walls and skyrmions in thin film micro- and nanostructures have been of interest to a growing number of researchers since the turn of the millennium, motivated by the rich interplay of materials, interface and spin physics as well as by the potential for applications in data storage, sensing and computing. This review focuses on the manipulation of magnetic domain walls and skyrmions by piezoelectric strain, which has received increasing attention recently. Static strain profiles generated, for example, by voltage applied to a piezoelectric-ferromagnetic heterostructure, and dynamic strain profiles produced by surface acoustic waves, are reviewed here. As demonstrated by the success of magnetic random access memory, thin magnetic films have been successfully incorporated into CMOS back-end of line device fabrication. The purpose of this review is therefore not only to highlight promising piezoelectric and magnetic materials and their properties when combined, but also to galvanise interest in the spin textures in these heterostructures for a variety of spin- and straintronic devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用静态和动态应变片操纵磁畴壁和天幕。
自进入新千年以来,越来越多的研究人员对薄膜微结构和纳米结构中的磁畴壁和磁天幕产生了浓厚的兴趣,其动因在于材料、界面和自旋物理学之间丰富的相互作用,以及在数据存储、传感和计算方面的应用潜力。本综述重点介绍最近日益受到关注的压电应变对磁畴壁和天幕的操控。本文将综述施加在压电铁磁异质结构上的电压等产生的静态应变曲线,以及表面声波产生的动态应变曲线。正如磁性随机存取存储器的成功所证明的那样,磁性薄膜已成功融入 CMOS 后段设备制造中。因此,本综述的目的不仅在于强调有前景的压电和磁性材料及其结合后的特性,还在于激发人们对这些异质结构中的自旋纹理的兴趣,以用于各种自旋和应变电子器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
Flexible pressure sensor with metallic reinforcement and graphene nanowalls for wearable electronics device. Thermal conductivity suppression in ZnO with AlZn2O4and ZnP2for thermoelectric applications. Focus on Institute of Applied Physics at Seoul National University. Magnetic domain wall and skyrmion manipulation by static and dynamic strain profiles. Single vertical InP nanowire diodes with low ideality factors contacted in-array for high-resolution optoelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1