Jing Yang, Shi-yuan Wan, Qiu-yi Song, Yun-hao Xie, Jun Wan, Yi-hao Zhou, Zi-tong Zhang, Yu-shuo Xiao, Xi Li, Hong Chen, Xin-ran Liu, Li Xu, Hui-juan You, De-sheng Hu, Robert B. Petersen, Yong-hui Zhang, Ling Zheng, Yu Zhang, Kun Huang
{"title":"Angiopoietin-like protein 8 directs DNA damage responses towards apoptosis by stabilizing PARP1-DNA condensates","authors":"Jing Yang, Shi-yuan Wan, Qiu-yi Song, Yun-hao Xie, Jun Wan, Yi-hao Zhou, Zi-tong Zhang, Yu-shuo Xiao, Xi Li, Hong Chen, Xin-ran Liu, Li Xu, Hui-juan You, De-sheng Hu, Robert B. Petersen, Yong-hui Zhang, Ling Zheng, Yu Zhang, Kun Huang","doi":"10.1038/s41418-024-01422-2","DOIUrl":null,"url":null,"abstract":"<p>Upon genotoxic stresses, cells employ various DNA damage responses (DDRs), including DNA damage repair or apoptosis, to safeguard genome integrity. However, the determinants among different DDRs choices are largely unknown. Here, we report angiopoietin-like protein 8 (ANGPTL8), a secreted regulator of lipid metabolism, localizes to the nucleus and acts as a dynamic switch that directs DDRs towards apoptosis rather than DNA repair after genotoxin exposure. ANGPTL8 deficiency alleviates DNA damage and apoptosis in cells exposed to genotoxins, as well as in the liver or kidney of mice injured by hepatic ischemia/reperfusion or cisplatin treatment. Mechanistically, ANGPTL8 physically interacts with Poly (ADP-ribose) polymerase 1 (PARP1), in a PARylation-independent manner, and reduces the fluidity of PARP1-DNA condensates, thereby enhancing the pro-apoptotic accumulation of PARP1 and PAR chains on DNA lesions. However, the transcription of <i>ANGPTL8</i> is gradually decreased following genotoxin treatment, partly due to downregulation of CCAAT enhancer binding protein alpha (CEBPA), presumably to avoid further cytotoxicity. Together, we provide new insights by which genotoxic stress induced DDRs are channeled to suicidal apoptosis to safeguard genome integrity.</p><figure></figure>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"68 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-024-01422-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Upon genotoxic stresses, cells employ various DNA damage responses (DDRs), including DNA damage repair or apoptosis, to safeguard genome integrity. However, the determinants among different DDRs choices are largely unknown. Here, we report angiopoietin-like protein 8 (ANGPTL8), a secreted regulator of lipid metabolism, localizes to the nucleus and acts as a dynamic switch that directs DDRs towards apoptosis rather than DNA repair after genotoxin exposure. ANGPTL8 deficiency alleviates DNA damage and apoptosis in cells exposed to genotoxins, as well as in the liver or kidney of mice injured by hepatic ischemia/reperfusion or cisplatin treatment. Mechanistically, ANGPTL8 physically interacts with Poly (ADP-ribose) polymerase 1 (PARP1), in a PARylation-independent manner, and reduces the fluidity of PARP1-DNA condensates, thereby enhancing the pro-apoptotic accumulation of PARP1 and PAR chains on DNA lesions. However, the transcription of ANGPTL8 is gradually decreased following genotoxin treatment, partly due to downregulation of CCAAT enhancer binding protein alpha (CEBPA), presumably to avoid further cytotoxicity. Together, we provide new insights by which genotoxic stress induced DDRs are channeled to suicidal apoptosis to safeguard genome integrity.
期刊介绍:
Mission, vision and values of Cell Death & Differentiation:
To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease.
To provide a unified forum for scientists and clinical researchers
It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.