Planar scanning probe microscopy enables vector magnetic field imaging at the nanoscale

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Science and Technology Pub Date : 2024-11-27 DOI:10.1088/2058-9565/ad93fa
Paul Weinbrenner, Patricia Quellmalz, Christian Giese, Luis Flacke, Manuel Müller, Matthias Althammer, Stephan Geprägs, Rudolf Gross and Friedemann Reinhard
{"title":"Planar scanning probe microscopy enables vector magnetic field imaging at the nanoscale","authors":"Paul Weinbrenner, Patricia Quellmalz, Christian Giese, Luis Flacke, Manuel Müller, Matthias Althammer, Stephan Geprägs, Rudolf Gross and Friedemann Reinhard","doi":"10.1088/2058-9565/ad93fa","DOIUrl":null,"url":null,"abstract":"Planar scanning probe microscopy is a recently emerging alternative approach to tip-based scanning probe imaging. It can scan an extended planar sensor, such as a polished bulk diamond doped with magnetic-field-sensitive nitrogen-vacancy (NV) centers, in nanometer-scale proximity of a planar sample. So far, this technique has been limited to optical near-field microscopy and has required nanofabrication of the sample of interest. Here we extend this technique to magnetometry using NV centers and present a modification that removes the need for sample-side nanofabrication. We harness this new ability to perform a hitherto infeasible measurement - direct imaging of the three-dimensional vector magnetic field of magnetic vortices in a thin film magnetic heterostructure, based on repeated scanning with NV centers with different orientations within the same scanning probe. Our result opens the door to quantum sensing using multiple qubits within the same scanning probe, a prerequisite for the use of entanglement-enhanced and massively parallel schemes.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"181 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad93fa","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Planar scanning probe microscopy is a recently emerging alternative approach to tip-based scanning probe imaging. It can scan an extended planar sensor, such as a polished bulk diamond doped with magnetic-field-sensitive nitrogen-vacancy (NV) centers, in nanometer-scale proximity of a planar sample. So far, this technique has been limited to optical near-field microscopy and has required nanofabrication of the sample of interest. Here we extend this technique to magnetometry using NV centers and present a modification that removes the need for sample-side nanofabrication. We harness this new ability to perform a hitherto infeasible measurement - direct imaging of the three-dimensional vector magnetic field of magnetic vortices in a thin film magnetic heterostructure, based on repeated scanning with NV centers with different orientations within the same scanning probe. Our result opens the door to quantum sensing using multiple qubits within the same scanning probe, a prerequisite for the use of entanglement-enhanced and massively parallel schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平面扫描探针显微镜实现纳米级矢量磁场成像
平面扫描探针显微镜是最近出现的一种替代尖端扫描探针成像的方法。它可以扫描一个扩展的平面传感器,如掺有磁场敏感氮空穴(NV)中心的抛光块状金刚石,在纳米级的范围内接近平面样品。迄今为止,这种技术仅限于光学近场显微镜,并且需要对相关样品进行纳米加工。在这里,我们将这一技术扩展到使用 NV 中心的磁力测量,并提出了一种无需样品侧纳米制造的改进方法。我们利用这一新能力进行了迄今为止不可行的测量--直接成像薄膜磁性异质结构中磁涡旋的三维矢量磁场,其基础是在同一扫描探针中重复扫描不同方向的 NV 中心。我们的成果为在同一扫描探针内使用多个量子比特进行量子传感打开了大门,而这正是使用纠缠增强和大规模并行方案的先决条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
期刊最新文献
Digital–analog quantum learning on Rydberg atom arrays Planar scanning probe microscopy enables vector magnetic field imaging at the nanoscale Quantum-inspired attribute selection algorithms Quantum state tomography based on infidelity estimation Near-optimal quantum kernel principal component analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1