Using process modeling and simulation to determine the sustainability of a novel lactic acid biorefinery in Europe: Influence of process improvements, scale, energy source, and market conditions

IF 9.7 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Cleaner Production Pub Date : 2024-11-27 DOI:10.1016/j.jclepro.2024.144347
Charlene Vance, Maneesh Kumar Mediboyina, Eleftheria Papadopoulou, Mayuki Cabrera-González, Daniela Reif, Joseph Sweeney, Michael Harasek, Fionnuala Murphy
{"title":"Using process modeling and simulation to determine the sustainability of a novel lactic acid biorefinery in Europe: Influence of process improvements, scale, energy source, and market conditions","authors":"Charlene Vance, Maneesh Kumar Mediboyina, Eleftheria Papadopoulou, Mayuki Cabrera-González, Daniela Reif, Joseph Sweeney, Michael Harasek, Fionnuala Murphy","doi":"10.1016/j.jclepro.2024.144347","DOIUrl":null,"url":null,"abstract":"The biorefinery concept aims to produce multiple high-value products from bio-based feedstocks. One such product is lactic acid, which is used across several industries such as food, pharmaceuticals, cosmetics, and chemicals. Lactic acid yield is influenced by several factors, and improvements in performance are often first demonstrated at lab-scale, requiring prospective models which make assumptions about how the system will be optimized to understand the potential of a commercial-scale plant. This study assesses the economic and environmental sustainability of a proposed lactic acid biorefinery through the combination of process modelling, techno-economic assessment, and life cycle assessment. The case study proposes producing high purity lactic acid from industrial candy waste and liquid digestate in Denmark through lactic acid fermentation and downstream membrane separations. A base case is first modeled to determine the economic and environmental hotspots of the system; scenarios are then modelled where improvement methods are implemented reducing consumption of energy, chemicals, water, and the production of waste, upscaling the system, and integrating bioenergy. Finally, a cost sensitivity analysis is run varying bioenergy, water, chemical, and labor costs based on the European market. By optimizing unit processes, scale, energy sources and market conditions, the lactic acid unit production cost and global warming potential can be lowered by 94% and 80% compared to the base case, respectively. However, these are optimized in different scenarios, indicating a trade-off in optimizing economic and environmental criteria. As even best-case lactic acid unit production cost is found to be 141-232% higher than market price, this production pathway will require further improvement or market changes before it can be commercially viable.","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"23 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jclepro.2024.144347","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The biorefinery concept aims to produce multiple high-value products from bio-based feedstocks. One such product is lactic acid, which is used across several industries such as food, pharmaceuticals, cosmetics, and chemicals. Lactic acid yield is influenced by several factors, and improvements in performance are often first demonstrated at lab-scale, requiring prospective models which make assumptions about how the system will be optimized to understand the potential of a commercial-scale plant. This study assesses the economic and environmental sustainability of a proposed lactic acid biorefinery through the combination of process modelling, techno-economic assessment, and life cycle assessment. The case study proposes producing high purity lactic acid from industrial candy waste and liquid digestate in Denmark through lactic acid fermentation and downstream membrane separations. A base case is first modeled to determine the economic and environmental hotspots of the system; scenarios are then modelled where improvement methods are implemented reducing consumption of energy, chemicals, water, and the production of waste, upscaling the system, and integrating bioenergy. Finally, a cost sensitivity analysis is run varying bioenergy, water, chemical, and labor costs based on the European market. By optimizing unit processes, scale, energy sources and market conditions, the lactic acid unit production cost and global warming potential can be lowered by 94% and 80% compared to the base case, respectively. However, these are optimized in different scenarios, indicating a trade-off in optimizing economic and environmental criteria. As even best-case lactic acid unit production cost is found to be 141-232% higher than market price, this production pathway will require further improvement or market changes before it can be commercially viable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cleaner Production
Journal of Cleaner Production 环境科学-工程:环境
CiteScore
20.40
自引率
9.00%
发文量
4720
审稿时长
111 days
期刊介绍: The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.
期刊最新文献
Investigating the behavioural intention towards electric vehicle: A dual factor approach using Sweeney and Soutar’s PERVAL scale and technology acceptance model Corrigendum to “Innovative approach for assessing nitrogen loss risk to surface waters from crop production in a watershed scale through nitrogen surplus index method” [J. Clean. Product. 475 (2024) 143725] Using process modeling and simulation to determine the sustainability of a novel lactic acid biorefinery in Europe: Influence of process improvements, scale, energy source, and market conditions Renewable Energy Communities in Rural Areas: A Comprehensive Overview of Current Development, Challenges, and Emerging Trends Benchmarking Circular Economy Measures in Buildings Along the 11R Framework: A Systematic Review of Quantified Impacts on Material Use, Energy Consumption, GHG Emissions, and Costs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1