Schottky junctions integrated with S-scheme heterojunctions in recyclable loaded ZnIn2S4/UiO-66/calcined graphite felt photocatalysts with enhanced carrier separation for photocatalytic degradation
Jiajun An, Jinqiao Wang, Yanan Li, Lei Wang, Bo Gao, Xudong Wang, Rui Miao, Miaolu He
{"title":"Schottky junctions integrated with S-scheme heterojunctions in recyclable loaded ZnIn2S4/UiO-66/calcined graphite felt photocatalysts with enhanced carrier separation for photocatalytic degradation","authors":"Jiajun An, Jinqiao Wang, Yanan Li, Lei Wang, Bo Gao, Xudong Wang, Rui Miao, Miaolu He","doi":"10.1016/j.seppur.2024.130814","DOIUrl":null,"url":null,"abstract":"Photocatalytic technology holds significant potential in the purification of antibiotic wastewater. However, efficient carrier separation and convenient recyclability are crucial for the practical application of photocatalysts. Herein, a loaded ZnIn<sub>2</sub>S<sub>4</sub>/UiO-66/calcined graphite felt (ZU/C-GF) composite photocatalyst was demonstrated to achieve efficient and stable removal of tetracycline hydrochloride (TCH) from water. Detailed characterization and theoretical calculations suggested that ZnIn<sub>2</sub>S<sub>4</sub> could form a Schottky junction with C-GF and an S-scheme heterojunction with UiO-66. The internal electric field (IEF) at the interface could promote the migration of photoelectrons, while the Schottky barrier could inhibit electron backflow. This synergistic strategy maximized the separation of photogenerated electrons and holes, thereby enhancing the photocatalytic performance. The optimal composite material exhibited the highest removal efficiency (97.0 %) and reaction rate (0.02312 min<sup>−1</sup>) while maintaining comparable degradation performance under solar irradiation. Additionally, this C-GF-based immobilization scheme allowed for rapid recovery and reuse of the photocatalyst, effectively addressing the challenge of recycling. ZU-10/C-CF demonstrated stable reusability after five consecutive cycles, revealing its significant potential for practical applications. This work presents novel insights for coupling Schottky junctions and S-scheme heterojunctions, and describes a more convenient approach for the continuous and stable treatment of antibiotic wastewater.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"8 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2024.130814","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalytic technology holds significant potential in the purification of antibiotic wastewater. However, efficient carrier separation and convenient recyclability are crucial for the practical application of photocatalysts. Herein, a loaded ZnIn2S4/UiO-66/calcined graphite felt (ZU/C-GF) composite photocatalyst was demonstrated to achieve efficient and stable removal of tetracycline hydrochloride (TCH) from water. Detailed characterization and theoretical calculations suggested that ZnIn2S4 could form a Schottky junction with C-GF and an S-scheme heterojunction with UiO-66. The internal electric field (IEF) at the interface could promote the migration of photoelectrons, while the Schottky barrier could inhibit electron backflow. This synergistic strategy maximized the separation of photogenerated electrons and holes, thereby enhancing the photocatalytic performance. The optimal composite material exhibited the highest removal efficiency (97.0 %) and reaction rate (0.02312 min−1) while maintaining comparable degradation performance under solar irradiation. Additionally, this C-GF-based immobilization scheme allowed for rapid recovery and reuse of the photocatalyst, effectively addressing the challenge of recycling. ZU-10/C-CF demonstrated stable reusability after five consecutive cycles, revealing its significant potential for practical applications. This work presents novel insights for coupling Schottky junctions and S-scheme heterojunctions, and describes a more convenient approach for the continuous and stable treatment of antibiotic wastewater.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.