Integration of metagenomic analysis and metabolic modeling reveals microbial interactions in activated sludge systems in response to nanoplastics and plasticizers
Lvjing Wang, Xiaoyu Wang, Hao Wu, Siqing Fan, Zhenmei Lu
{"title":"Integration of metagenomic analysis and metabolic modeling reveals microbial interactions in activated sludge systems in response to nanoplastics and plasticizers","authors":"Lvjing Wang, Xiaoyu Wang, Hao Wu, Siqing Fan, Zhenmei Lu","doi":"10.1016/j.watres.2024.122863","DOIUrl":null,"url":null,"abstract":"Nanoplastics and plasticizers are prevalent in activated sludge and pose a potential threat to microbial communities in wastewater treatment systems. However, studies on the effects of nanoplastics and plasticizers on the interaction mechanisms and metabolic functions of microbial communities in activated sludge systems are still scarce. In this study, the responses of microbial interactions and metabolic functions to PVC nanoplastics (PVC-NPs) and bis(2-ethylhexyl) phthalate (DEHP) in activated sludge were investigated via a combination of amplicon sequencing, metagenome sequencing, and metabolic modeling. The results revealed that DEHP had a significant effect on the microbial community under short-term exposure. DEHP contamination may increase vitamin B<sub>12</sub> producers to enhance species collaboration in communities. Furthermore, community metabolic modeling revealed that DEHP-degrading bacteria could promote positive interactions among community members. The increased metabolic exchange flux of siderophores and glutathione in microbial communities under PVC-NPs and DEHP contamination implied that microbial communities may maintain iron homeostasis in response to PVC-NPs and DEHP contamination through interspecies collaboration. However, more data are needed to further validate these results. This study provides vital insights into the response mechanisms of microbial interactions to nanoplastic and plasticizer contamination in activated sludge systems.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"16 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122863","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoplastics and plasticizers are prevalent in activated sludge and pose a potential threat to microbial communities in wastewater treatment systems. However, studies on the effects of nanoplastics and plasticizers on the interaction mechanisms and metabolic functions of microbial communities in activated sludge systems are still scarce. In this study, the responses of microbial interactions and metabolic functions to PVC nanoplastics (PVC-NPs) and bis(2-ethylhexyl) phthalate (DEHP) in activated sludge were investigated via a combination of amplicon sequencing, metagenome sequencing, and metabolic modeling. The results revealed that DEHP had a significant effect on the microbial community under short-term exposure. DEHP contamination may increase vitamin B12 producers to enhance species collaboration in communities. Furthermore, community metabolic modeling revealed that DEHP-degrading bacteria could promote positive interactions among community members. The increased metabolic exchange flux of siderophores and glutathione in microbial communities under PVC-NPs and DEHP contamination implied that microbial communities may maintain iron homeostasis in response to PVC-NPs and DEHP contamination through interspecies collaboration. However, more data are needed to further validate these results. This study provides vital insights into the response mechanisms of microbial interactions to nanoplastic and plasticizer contamination in activated sludge systems.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.