{"title":"Assessing Best Practices in Natural Gas Production and Emerging CO2 Capture Techniques to Minimize the Carbon Footprint of Electricity Generation","authors":"Ryan Cownden*, and , Mathieu Lucquiaud, ","doi":"10.1021/acs.est.4c0293310.1021/acs.est.4c02933","DOIUrl":null,"url":null,"abstract":"<p >Natural gas (NG) is expected to provide a substantial portion of electricity generation in many jurisdictions for the foreseeable future. Postcombustion carbon capture and storage (CCS) effectively abates direct CO<sub>2</sub> emissions; however, indirect NG supply chain emissions in most jurisdictions are incompatible with climate change mitigation goals. This life cycle assessment evaluates specific opportunities to reduce the carbon footprint of combined cycle gas turbine (CCGT) generation with CCS using existing low-emission NG production practices, technologies, and processes combined with emerging CCS techniques to achieve high CO<sub>2</sub> capture rates and mitigate startup emissions. We find baseload life cycle greenhouse gas (GHG) emission intensity ranges from 22 to 62 kgCO<sub>2</sub>e/MWh for 95–98.5% CO<sub>2</sub> capture, within the range of published estimates for wind and photovoltaic power and considerably below prior estimates of CCGT with CCS. Low-emission NG production practices reduce other environmental impacts, which are dominated by combustion-related air pollution. We also show how interim solvent storage can effectively mitigate emissions from CCGT start/stop cycles. This work highlights the importance of mitigating both CO<sub>2</sub> and methane emissions from NG supply chains and proposes a more nuanced discussion regarding the potential contribution of NG to the future energy supply. A surrogate model is provided to estimate life cycle GHG emissions for CCGT with CCS and user-input parameters.</p><p >First LCA of electricity generation from natural gas with best practices in supply chain emissions; shows carbon footprint could be comparable to wind turbines and 63–71% lower than photovoltaics.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"58 47","pages":"20906–20917 20906–20917"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.est.4c02933","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c02933","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Natural gas (NG) is expected to provide a substantial portion of electricity generation in many jurisdictions for the foreseeable future. Postcombustion carbon capture and storage (CCS) effectively abates direct CO2 emissions; however, indirect NG supply chain emissions in most jurisdictions are incompatible with climate change mitigation goals. This life cycle assessment evaluates specific opportunities to reduce the carbon footprint of combined cycle gas turbine (CCGT) generation with CCS using existing low-emission NG production practices, technologies, and processes combined with emerging CCS techniques to achieve high CO2 capture rates and mitigate startup emissions. We find baseload life cycle greenhouse gas (GHG) emission intensity ranges from 22 to 62 kgCO2e/MWh for 95–98.5% CO2 capture, within the range of published estimates for wind and photovoltaic power and considerably below prior estimates of CCGT with CCS. Low-emission NG production practices reduce other environmental impacts, which are dominated by combustion-related air pollution. We also show how interim solvent storage can effectively mitigate emissions from CCGT start/stop cycles. This work highlights the importance of mitigating both CO2 and methane emissions from NG supply chains and proposes a more nuanced discussion regarding the potential contribution of NG to the future energy supply. A surrogate model is provided to estimate life cycle GHG emissions for CCGT with CCS and user-input parameters.
First LCA of electricity generation from natural gas with best practices in supply chain emissions; shows carbon footprint could be comparable to wind turbines and 63–71% lower than photovoltaics.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.