Interface Engineering in All-Oxide Photovoltaic Devices Based on Photoferroelectric BiFe0.9Co0.1O3 Thin Films

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-11-13 DOI:10.1021/acsaelm.4c0153310.1021/acsaelm.4c01533
Pamela Machado, Pol Salles, Alexander Frebel, Gabriele De Luca, Eloi Ros, Christian Hagendorf, Ignasi Fina, Joaquim Puigdollers and Mariona Coll*, 
{"title":"Interface Engineering in All-Oxide Photovoltaic Devices Based on Photoferroelectric BiFe0.9Co0.1O3 Thin Films","authors":"Pamela Machado,&nbsp;Pol Salles,&nbsp;Alexander Frebel,&nbsp;Gabriele De Luca,&nbsp;Eloi Ros,&nbsp;Christian Hagendorf,&nbsp;Ignasi Fina,&nbsp;Joaquim Puigdollers and Mariona Coll*,&nbsp;","doi":"10.1021/acsaelm.4c0153310.1021/acsaelm.4c01533","DOIUrl":null,"url":null,"abstract":"<p >Photoferroelectric BiFeO<sub>3</sub> (BFO) has attracted renewed interest to be integrated into thin film photovoltaic (PV) devices as a stable, lead-free, and versatile photoabsorber with simplified architecture. While significant efforts have been dedicated toward the exploration of strategies to tailor the properties of this photoabsorber to improve the device performance, efficiencies still remain low. The modification of the BFO interface by the incorporation of transport-selective layers can offer fresh opportunities to modify the properties of the device. Identifying an optical and electrically suitable selective layer while ensuring easy device processing and controlled film properties is challenging. In this work, we determine the influence of incorporating a ZnO layer on the ferroelectric and photoresponse behavior of an epitaxial BiFe<sub>0.9</sub>Co<sub>0.1</sub>O<sub>3</sub> (BFCO)-based heterostructure. The device is completed with Sn-doped In<sub>2</sub>O<sub>3</sub> (ITO) and La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> (LSMO) electrodes. This all-oxide system is stable under ambient conditions and displays robust ferroelectricity. The coupled ferroelectricity–photoresponse measurements demonstrate that the short circuit current can be modulated by ferroelectric polarization in up to 68% under blue monochromatic light. Also, the responsivity of the system with the ZnO-modified interface is larger than that of the system with no ZnO. Complementary band energy alignment studies reveal that the observed increase in the short circuit current density of the device with ZnO is attributed to lower Fermi level energy at the ZnO/BFCO interface compared to the ITO/BFCO interface, which reduces charge recombination. Therefore, this study provides useful insights into the role of the ZnO interface layer in stable BFO-based devices to further explore their viability for potential optoelectronic applications.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"6 11","pages":"8251–8259 8251–8259"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaelm.4c01533","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c01533","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Photoferroelectric BiFeO3 (BFO) has attracted renewed interest to be integrated into thin film photovoltaic (PV) devices as a stable, lead-free, and versatile photoabsorber with simplified architecture. While significant efforts have been dedicated toward the exploration of strategies to tailor the properties of this photoabsorber to improve the device performance, efficiencies still remain low. The modification of the BFO interface by the incorporation of transport-selective layers can offer fresh opportunities to modify the properties of the device. Identifying an optical and electrically suitable selective layer while ensuring easy device processing and controlled film properties is challenging. In this work, we determine the influence of incorporating a ZnO layer on the ferroelectric and photoresponse behavior of an epitaxial BiFe0.9Co0.1O3 (BFCO)-based heterostructure. The device is completed with Sn-doped In2O3 (ITO) and La0.7Sr0.3MnO3 (LSMO) electrodes. This all-oxide system is stable under ambient conditions and displays robust ferroelectricity. The coupled ferroelectricity–photoresponse measurements demonstrate that the short circuit current can be modulated by ferroelectric polarization in up to 68% under blue monochromatic light. Also, the responsivity of the system with the ZnO-modified interface is larger than that of the system with no ZnO. Complementary band energy alignment studies reveal that the observed increase in the short circuit current density of the device with ZnO is attributed to lower Fermi level energy at the ZnO/BFCO interface compared to the ITO/BFCO interface, which reduces charge recombination. Therefore, this study provides useful insights into the role of the ZnO interface layer in stable BFO-based devices to further explore their viability for potential optoelectronic applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光铁电 BiFe0.9Co0.1O3 薄膜的全氧化物光伏器件中的界面工程设计
作为一种稳定、无铅、多功能、结构简化的光吸收体,Biferroelectric BiFeO3(BFO)再次引起了人们对将其集成到薄膜光伏(PV)设备中的兴趣。虽然人们一直在努力探索如何调整这种光吸收体的特性以提高设备性能,但其效率仍然很低。通过加入传输选择层来改变 BFO 界面,可以为改变器件性能提供新的机会。在确保器件加工简便和薄膜性能可控的同时,确定一种光学和电学上合适的选择性层是一项挑战。在这项工作中,我们确定了加入氧化锌层对基于外延 BiFe0.9Co0.1O3 (BFCO) 异质结构的铁电和光电响应行为的影响。该器件采用掺杂锡的 In2O3 (ITO) 和 La0.7Sr0.3MnO3 (LSMO) 电极。这种全氧化物系统在环境条件下非常稳定,并显示出强大的铁电性。铁电-光响应耦合测量结果表明,在蓝色单色光下,铁电极化对短路电流的调制可达 68%。此外,有氧化锌修饰界面的系统的响应率大于没有氧化锌的系统。互补带能排列研究表明,与 ITO/BFCO 界面相比,ZnO/BFCO 界面的费米级能更低,从而减少了电荷重组,因此观察到带有 ZnO 的器件的短路电流密度增大。因此,这项研究为了解氧化锌界面层在基于 BFO 的稳定器件中的作用提供了有用的见解,有助于进一步探索其在潜在光电应用中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
期刊最新文献
What Sir William Battle Found: Observations Beyond his Sign. Brief Report: Increasing Intraverbal Responses to Subcategorical Questions via Tact and Match-to-Sample Instruction. Issue Editorial Masthead Issue Publication Information Efficient Synergy of Sea Urchin-like Graded Structure Supercapacitor Electrodes by Modulating the Morphology of Layered Double Hydroxide Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1