Controllable artificial watermark injected parallel compressive sensing for simultaneous compression-encryption applications

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Digital Signal Processing Pub Date : 2024-11-22 DOI:10.1016/j.dsp.2024.104859
Xiuling Li , Bo Zhang , Haijian Wei , Qiang Wang , Zhengdong Li
{"title":"Controllable artificial watermark injected parallel compressive sensing for simultaneous compression-encryption applications","authors":"Xiuling Li ,&nbsp;Bo Zhang ,&nbsp;Haijian Wei ,&nbsp;Qiang Wang ,&nbsp;Zhengdong Li","doi":"10.1016/j.dsp.2024.104859","DOIUrl":null,"url":null,"abstract":"<div><div>The emerging compressed sensing (CS) enables compression and encryption simultaneously, which is very suitable for the resource-constraint Internet of things (IoT) applications. However, traditional CS-based cryptosystem can not provide efficient resistance to known-plaintext attack (KPA) under the multi-time-sampling (MTS) scenario. A novel CS-based privacy-preserving cryptosystem, called PCS-CAW (parallel CS injected with controllable artificial watermark), for simultaneous compression-encryption applications is proposed. Firstly, the original plaintext is scrambled by the global random permutation (GRP) operation. Then, the novel watermark injected parallel CS (PCS) is developed to re-encrypt and compress the intermediate ciphertext. Since a controllable artificial random watermark is injected into PCS sampling processing, the proposed PCS-CAW cryptosystem provides efficient resistance to KPA under the MTS scenario. In the decoding stage, a distinctive watermark removing strategy is developed. Experiments demonstrate that the proposed cryptosystem can achieve superior security and compression performance than previous CS-based ones.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"157 ","pages":"Article 104859"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424004834","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The emerging compressed sensing (CS) enables compression and encryption simultaneously, which is very suitable for the resource-constraint Internet of things (IoT) applications. However, traditional CS-based cryptosystem can not provide efficient resistance to known-plaintext attack (KPA) under the multi-time-sampling (MTS) scenario. A novel CS-based privacy-preserving cryptosystem, called PCS-CAW (parallel CS injected with controllable artificial watermark), for simultaneous compression-encryption applications is proposed. Firstly, the original plaintext is scrambled by the global random permutation (GRP) operation. Then, the novel watermark injected parallel CS (PCS) is developed to re-encrypt and compress the intermediate ciphertext. Since a controllable artificial random watermark is injected into PCS sampling processing, the proposed PCS-CAW cryptosystem provides efficient resistance to KPA under the MTS scenario. In the decoding stage, a distinctive watermark removing strategy is developed. Experiments demonstrate that the proposed cryptosystem can achieve superior security and compression performance than previous CS-based ones.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可控人工水印注入并行压缩传感,用于同时压缩加密应用
新兴的压缩传感(CS)可同时实现压缩和加密,非常适合资源受限的物联网(IoT)应用。然而,在多时间采样(MTS)场景下,传统的基于CS的密码系统无法有效抵御已知明文攻击(KPA)。本文提出了一种基于 CS 的新型隐私保护密码系统,称为 PCS-CAW(注入可控人工水印的并行 CS),适用于压缩-加密同步应用。首先,通过全局随机置换(GRP)操作对原始明文进行扰码。然后,开发新型水印注入并行 CS(PCS)来重新加密和压缩中间密文。由于在 PCS 采样处理过程中注入了可控的人工随机水印,因此所提出的 PCS-CAW 密码系统能在 MTS 场景下有效抵抗 KPA。在解码阶段,开发了一种独特的水印去除策略。实验证明,与之前基于 CS 的密码系统相比,所提出的密码系统能实现更优越的安全性和压缩性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
期刊最新文献
Editorial Board Editorial Board Research on ZYNQ neural network acceleration method for aluminum surface microdefects Cross-scale informative priors network for medical image segmentation An improved digital predistortion scheme for nonlinear transmitters with limited bandwidth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1