Jingwen Wang , Jose Luis Pancorbo , Miguel Quemada , Jiahua Zhang , Yun Bai , Sha Zhang , Shanxin Guo , Jinsong Chen
{"title":"Field-scale evaluation of a satellite-based terrestrial biosphere model for estimating crop response to management practices and productivity","authors":"Jingwen Wang , Jose Luis Pancorbo , Miguel Quemada , Jiahua Zhang , Yun Bai , Sha Zhang , Shanxin Guo , Jinsong Chen","doi":"10.1016/j.isprsjprs.2024.11.008","DOIUrl":null,"url":null,"abstract":"<div><div>Timely and accurate information on crop productivity is essential for characterizing crop growing status and guiding adaptive management practices to ensure food security. Terrestrial biosphere models forced by satellite observations (satellite-TBMs) are viewed as robust tools for understanding large-scale agricultural productivity, with distinct advantages of generalized input data requirement and comprehensive representation of carbon–water-energy exchange mechanisms. However, it remains unclear whether these models can maintain consistent accuracy at field scale and provide useful information for farmers to make site-specific management decisions. This study aims to investigate the capability of a satellite-TBM to estimate crop productivity at the granularity of individual fields using harmonized Sentinel-2 and Landsat-8 time series. Emphasis was placed on evaluating the model performance in: (i) representing crop response to the spatially and temporally varying field management practices, and (ii) capturing the variation in crop growth, biomass and yield under complex interactions among crop genotypes, environment, and management conditions. To achieve the first objective, we conducted on-farm experiments with controlled nitrogen (N) fertilization and irrigation treatments to assess the efficacy of using satellite-retrieved leaf area index (LAI) to reflect the effect of management practices in the TBM. For the second objective, we integrated a yield formation module into the satellite-TBM and compared it with the semi-empirical harvest index (HI) method. The model performance was then evaluated under varying conditions using an extensive dataset consisting of observations from four crop species (i.e., soybean, wheat, rice and maize), 42 cultivars and 58 field-years. Results demonstrated that satellite-retrieved LAI effectively captured the effects of N and water supply on crop growth, showing high sensitivity to both the timing and quantity of these inputs. This allowed for a spatiotemporal representation of management impacts, even without prior knowledge of the specific management schedules. The TBM forced by satellite LAI produced consistent biomass dynamics with ground measurements, showing an overall correlation coefficient (R) of 0.93 and a relative root mean square error (RRMSE) of 31.4 %. However, model performance declined from biomass to yield estimation, with the HI-based method (R = 0.80, RRMSE = 23.7 %) outperforming mechanistic modeling of grain filling (R = 0.43, RRMSE = 43.4 %). Model accuracy for winter wheat was lower than that for summer crops such as rice, maize and soybean, suggesting potential underrepresentation of the overwintering processes. This study illustrates the utility of satellite-TBMs in crop productivity estimation at the field level, and identifies existing uncertainties and limitations for future model developments.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"219 ","pages":"Pages 1-21"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624004167","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Timely and accurate information on crop productivity is essential for characterizing crop growing status and guiding adaptive management practices to ensure food security. Terrestrial biosphere models forced by satellite observations (satellite-TBMs) are viewed as robust tools for understanding large-scale agricultural productivity, with distinct advantages of generalized input data requirement and comprehensive representation of carbon–water-energy exchange mechanisms. However, it remains unclear whether these models can maintain consistent accuracy at field scale and provide useful information for farmers to make site-specific management decisions. This study aims to investigate the capability of a satellite-TBM to estimate crop productivity at the granularity of individual fields using harmonized Sentinel-2 and Landsat-8 time series. Emphasis was placed on evaluating the model performance in: (i) representing crop response to the spatially and temporally varying field management practices, and (ii) capturing the variation in crop growth, biomass and yield under complex interactions among crop genotypes, environment, and management conditions. To achieve the first objective, we conducted on-farm experiments with controlled nitrogen (N) fertilization and irrigation treatments to assess the efficacy of using satellite-retrieved leaf area index (LAI) to reflect the effect of management practices in the TBM. For the second objective, we integrated a yield formation module into the satellite-TBM and compared it with the semi-empirical harvest index (HI) method. The model performance was then evaluated under varying conditions using an extensive dataset consisting of observations from four crop species (i.e., soybean, wheat, rice and maize), 42 cultivars and 58 field-years. Results demonstrated that satellite-retrieved LAI effectively captured the effects of N and water supply on crop growth, showing high sensitivity to both the timing and quantity of these inputs. This allowed for a spatiotemporal representation of management impacts, even without prior knowledge of the specific management schedules. The TBM forced by satellite LAI produced consistent biomass dynamics with ground measurements, showing an overall correlation coefficient (R) of 0.93 and a relative root mean square error (RRMSE) of 31.4 %. However, model performance declined from biomass to yield estimation, with the HI-based method (R = 0.80, RRMSE = 23.7 %) outperforming mechanistic modeling of grain filling (R = 0.43, RRMSE = 43.4 %). Model accuracy for winter wheat was lower than that for summer crops such as rice, maize and soybean, suggesting potential underrepresentation of the overwintering processes. This study illustrates the utility of satellite-TBMs in crop productivity estimation at the field level, and identifies existing uncertainties and limitations for future model developments.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.