Hao-Wen Dong , Chen Shen , Ze Liu , Sheng-Dong Zhao , Zhiwen Ren , Chen-Xu Liu , Xudong He , Steven A. Cummer , Yue-Sheng Wang , Daining Fang , Li Cheng
{"title":"Inverse design of phononic meta-structured materials","authors":"Hao-Wen Dong , Chen Shen , Ze Liu , Sheng-Dong Zhao , Zhiwen Ren , Chen-Xu Liu , Xudong He , Steven A. Cummer , Yue-Sheng Wang , Daining Fang , Li Cheng","doi":"10.1016/j.mattod.2024.09.012","DOIUrl":null,"url":null,"abstract":"<div><div>Flexible manipulation of elastic and acoustic waves through phononic meta-structured materials (PMSMs) has attracted a lot of attention in the last three decades and shows a bright future for potential applications in many fields. Conventional engineering design methods for PMSMs rely on changing the material composition and empirical structural configurations, which often result in limited performance due to the limited design space. Recent advances in the fields of additive manufacturing, optimization, and artificial intelligence have given rise to a plethora of creative meta-structured materials that offer superior functionality on demand. In this Review, we provide an overview of inverse design of phononic crystals, phononic-crystal devices, phononic metamaterials, phononic-metamaterial devices, phononic metasurfaces, and phononic topological insulators. We first introduce fundamental wave quantities including dispersion relations, scattering characterizations, and dynamic effective parameters, and then discuss how these wave quantities can be leveraged for systematic inverse design of PMSMs to achieve a variety of customized phononic functionalities with highly customizable full-wave responses, intrinsic physical parameters, and hybrid local–global responses. Furthermore, we show representative applications of some inverse-designed PMSMs and look at future directions. We outline the concept of phononic structures genome engineering (PSGE) through key developments in PMSM inverse design. Finally, we discuss the new possibilities that PSGE brings to wave engineering.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 824-855"},"PeriodicalIF":21.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124002165","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible manipulation of elastic and acoustic waves through phononic meta-structured materials (PMSMs) has attracted a lot of attention in the last three decades and shows a bright future for potential applications in many fields. Conventional engineering design methods for PMSMs rely on changing the material composition and empirical structural configurations, which often result in limited performance due to the limited design space. Recent advances in the fields of additive manufacturing, optimization, and artificial intelligence have given rise to a plethora of creative meta-structured materials that offer superior functionality on demand. In this Review, we provide an overview of inverse design of phononic crystals, phononic-crystal devices, phononic metamaterials, phononic-metamaterial devices, phononic metasurfaces, and phononic topological insulators. We first introduce fundamental wave quantities including dispersion relations, scattering characterizations, and dynamic effective parameters, and then discuss how these wave quantities can be leveraged for systematic inverse design of PMSMs to achieve a variety of customized phononic functionalities with highly customizable full-wave responses, intrinsic physical parameters, and hybrid local–global responses. Furthermore, we show representative applications of some inverse-designed PMSMs and look at future directions. We outline the concept of phononic structures genome engineering (PSGE) through key developments in PMSM inverse design. Finally, we discuss the new possibilities that PSGE brings to wave engineering.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.