Juan Kuang , Qianqian Wang , Zhe Jia , Guoming Yi , Bo Sun , Yiyuan Yang , Ligang Sun , Ping Zhang , Pengfei He , Yue Xing , Xiubing Liang , Yang Lu , Baolong Shen
{"title":"Ablation-resistant yttrium-modified high-entropy refractory metal silicide (NbMoTaW)Si2 coating for oxidizing environments up to 2100 °C","authors":"Juan Kuang , Qianqian Wang , Zhe Jia , Guoming Yi , Bo Sun , Yiyuan Yang , Ligang Sun , Ping Zhang , Pengfei He , Yue Xing , Xiubing Liang , Yang Lu , Baolong Shen","doi":"10.1016/j.mattod.2024.08.012","DOIUrl":null,"url":null,"abstract":"<div><div>Refractory high-entropy alloys (RHEAs) are pivotal in ultra-high temperature applications, such as rocket nozzles, aerospace engines, and leading edges of hypersonic vehicles due to their exceptional mechanical ability to withstand severe thermal environments (in excess of 2000 °C). However, the selection of materials that satisfy the stringent criteria required for effective ablation resistance remains notably restricted. Here, a novel yttrium-modified high-entropy refractory metal silicide (Y-HERMS) coated on a refractory high-entropy NbMoTaW alloy is developed via pack cementation process. The developed Y-HERMS coating with sluggish diffusion effect demonstrates extraordinary ablation resistance, maintaining near-zero damage at sustained temperatures up to 2100 °C for a duration of 180 s, surpassing state-of-the-art high-performance silicide coatings. Such exceptional ultra-high ablation performance is primarily ascribed to the in-situ development of a high viscosity Si-Y-O oxide layer with increased thermal stability and the presence of high-melting Y(Nb<sub>0.5</sub>Ta<sub>0.5</sub>)O<sub>4</sub> oxides as skeleton structure. Theoretical results elucidate that the Y-HERMS promotes the formation of SiO<sub>2</sub>, which impedes the diffusion of O into metal silicide layer, synergistically contributing to the superior ablation resistance. These findings highlight the potential of utilizing high-entropy materials with excellent ablation resistance in extreme thermal environments.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 156-166"},"PeriodicalIF":21.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001779","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Refractory high-entropy alloys (RHEAs) are pivotal in ultra-high temperature applications, such as rocket nozzles, aerospace engines, and leading edges of hypersonic vehicles due to their exceptional mechanical ability to withstand severe thermal environments (in excess of 2000 °C). However, the selection of materials that satisfy the stringent criteria required for effective ablation resistance remains notably restricted. Here, a novel yttrium-modified high-entropy refractory metal silicide (Y-HERMS) coated on a refractory high-entropy NbMoTaW alloy is developed via pack cementation process. The developed Y-HERMS coating with sluggish diffusion effect demonstrates extraordinary ablation resistance, maintaining near-zero damage at sustained temperatures up to 2100 °C for a duration of 180 s, surpassing state-of-the-art high-performance silicide coatings. Such exceptional ultra-high ablation performance is primarily ascribed to the in-situ development of a high viscosity Si-Y-O oxide layer with increased thermal stability and the presence of high-melting Y(Nb0.5Ta0.5)O4 oxides as skeleton structure. Theoretical results elucidate that the Y-HERMS promotes the formation of SiO2, which impedes the diffusion of O into metal silicide layer, synergistically contributing to the superior ablation resistance. These findings highlight the potential of utilizing high-entropy materials with excellent ablation resistance in extreme thermal environments.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.