Liu Zhang , Jincun Liu , Yaoguang Wei , Dong An , Xin Ning
{"title":"Self-supervised learning-based multi-source spectral fusion for fruit quality evaluation:a case study in mango fruit ripeness prediction","authors":"Liu Zhang , Jincun Liu , Yaoguang Wei , Dong An , Xin Ning","doi":"10.1016/j.inffus.2024.102814","DOIUrl":null,"url":null,"abstract":"<div><div>Rapid and non-destructive techniques for fruit quality evaluation are widely concerned in modern agro-industry. Spectroscopy is one of the most commonly used techniques in this field. With the growing popularity of various spectroscopic instruments, it is indeed worthwhile to explore modeling with multi-source spectral data to achieve more accurate predictions. Nonetheless, a major challenge is acquiring enough labeled samples, as measuring fruit chemical values is laborious, expensive, and time-consuming, which hinders the development of a reliable prediction model. Therefore, this study aims to develop a model for predicting the internal chemical composition of fruits by integrating multi-source spectral fusion combined with self-supervised learning (SSL). A visible (Vis) and near-infrared (NIR) spectral dataset related to dry matter content (DMC) prediction in mango fruit is used as an example to validate the effectiveness of the proposed method. To obtain multi-source spectral data, the Vis and NIR portions are processed as two separate spectral ranges. An SSL pre-training is performed utilizing a large amount of raw unlabeled spectral data to extract general knowledge, which is subsequently migrated to a downstream task for fine-tuning. The experimental results indicate that the multi-source spectral fusion model performs better than the single-source spectral model. Moreover, SSL solves the data scarcity problem and outperforms non-pre-trained models in downstream DMC prediction tasks with less computational overhead. Remarkably, utilizing only less than 10% of the total samples is sufficient to achieve a performance close to 99% of the best results. The presented method has great potential in spectral analysis of food and agro-products.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"117 ","pages":"Article 102814"},"PeriodicalIF":14.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156625352400592X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid and non-destructive techniques for fruit quality evaluation are widely concerned in modern agro-industry. Spectroscopy is one of the most commonly used techniques in this field. With the growing popularity of various spectroscopic instruments, it is indeed worthwhile to explore modeling with multi-source spectral data to achieve more accurate predictions. Nonetheless, a major challenge is acquiring enough labeled samples, as measuring fruit chemical values is laborious, expensive, and time-consuming, which hinders the development of a reliable prediction model. Therefore, this study aims to develop a model for predicting the internal chemical composition of fruits by integrating multi-source spectral fusion combined with self-supervised learning (SSL). A visible (Vis) and near-infrared (NIR) spectral dataset related to dry matter content (DMC) prediction in mango fruit is used as an example to validate the effectiveness of the proposed method. To obtain multi-source spectral data, the Vis and NIR portions are processed as two separate spectral ranges. An SSL pre-training is performed utilizing a large amount of raw unlabeled spectral data to extract general knowledge, which is subsequently migrated to a downstream task for fine-tuning. The experimental results indicate that the multi-source spectral fusion model performs better than the single-source spectral model. Moreover, SSL solves the data scarcity problem and outperforms non-pre-trained models in downstream DMC prediction tasks with less computational overhead. Remarkably, utilizing only less than 10% of the total samples is sufficient to achieve a performance close to 99% of the best results. The presented method has great potential in spectral analysis of food and agro-products.
期刊介绍:
Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.