Single-view-based high-fidelity three-dimensional reconstruction of leaves

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Computers and Electronics in Agriculture Pub Date : 2024-11-26 DOI:10.1016/j.compag.2024.109682
Longfei Wang , Le Yang , Huiying Xu , Xinzhong Zhu , Wouladje Cabrel , Golden Tendekai Mumanikidzwa , Xinyu Liu , Weijian Jiang , Hao Chen , Wenhang Jiang
{"title":"Single-view-based high-fidelity three-dimensional reconstruction of leaves","authors":"Longfei Wang ,&nbsp;Le Yang ,&nbsp;Huiying Xu ,&nbsp;Xinzhong Zhu ,&nbsp;Wouladje Cabrel ,&nbsp;Golden Tendekai Mumanikidzwa ,&nbsp;Xinyu Liu ,&nbsp;Weijian Jiang ,&nbsp;Hao Chen ,&nbsp;Wenhang Jiang","doi":"10.1016/j.compag.2024.109682","DOIUrl":null,"url":null,"abstract":"<div><div>In modern agricultural science research, high-fidelity three-dimensional (3D) leaf models are crucial for crop growth analysis. However, reconstructing the complex morphology and texture of leaves from a single viewpoint under varying natural lighting conditions poses a significant challenge. To address the issues associated with this challenge, this paper presents a diffusion model-based method for single-view leaf reconstruction using potato leaves as the experimental subject. In the camera prediction process, the combination of an explicit point cloud generation technique and an implicit 3D Gaussian rendering technique enables the accurate prediction of camera parameters and the effective capture of leaf phenotypic features. In the synthesis of the 3D model of the leaf, a strategy for optimizing the coarse model UV texture is designed with the objective of achieving spatial consistency of texture details. Furthermore, the model was successfully applied to the reconstruction of other crop leaves and lamellar structural objects, and innovatively constructed a leaf reconstruction model with disease characteristics, aiming to provide a reference for the early 3D detection of crop diseases, as well as a reference for the 3D reconstruction and visualization of other lamellar objects. The results demonstrate that the method is effective in reconstructing the morphological structure and texture details of leaves, as well as thin sheet-like structured objects, achieving fast and high-fidelity single-view reconstruction.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109682"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924010731","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In modern agricultural science research, high-fidelity three-dimensional (3D) leaf models are crucial for crop growth analysis. However, reconstructing the complex morphology and texture of leaves from a single viewpoint under varying natural lighting conditions poses a significant challenge. To address the issues associated with this challenge, this paper presents a diffusion model-based method for single-view leaf reconstruction using potato leaves as the experimental subject. In the camera prediction process, the combination of an explicit point cloud generation technique and an implicit 3D Gaussian rendering technique enables the accurate prediction of camera parameters and the effective capture of leaf phenotypic features. In the synthesis of the 3D model of the leaf, a strategy for optimizing the coarse model UV texture is designed with the objective of achieving spatial consistency of texture details. Furthermore, the model was successfully applied to the reconstruction of other crop leaves and lamellar structural objects, and innovatively constructed a leaf reconstruction model with disease characteristics, aiming to provide a reference for the early 3D detection of crop diseases, as well as a reference for the 3D reconstruction and visualization of other lamellar objects. The results demonstrate that the method is effective in reconstructing the morphological structure and texture details of leaves, as well as thin sheet-like structured objects, achieving fast and high-fidelity single-view reconstruction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于单视角的叶片高保真三维重建技术
在现代农业科学研究中,高保真三维(3D)叶片模型对作物生长分析至关重要。然而,在不同的自然光条件下,从单一视角重建复杂的叶片形态和纹理是一项重大挑战。为了解决与这一挑战相关的问题,本文以马铃薯叶片为实验对象,提出了一种基于扩散模型的单视角叶片重建方法。在相机预测过程中,显式点云生成技术与隐式三维高斯渲染技术相结合,实现了相机参数的准确预测和叶片表型特征的有效捕捉。在合成叶片的三维模型时,设计了一种优化粗模型 UV 纹理的策略,目的是实现纹理细节的空间一致性。此外,该模型还成功应用于其他作物叶片和叶片结构物体的重建,并创新性地构建了具有病害特征的叶片重建模型,旨在为作物病害的早期三维检测提供参考,并为其他叶片物体的三维重建和可视化提供参考。结果表明,该方法能有效重建叶片的形态结构和纹理细节,以及薄片状结构物体,实现了快速、高保真的单视角重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
期刊最新文献
Counting wheat heads using a simulation model Optimization and testing of a mechanical roller seeder based on DEM-MBD rice potting tray Development of plant phenotyping system using Pan Tilt Zoom camera and verification of its validity An IoT-based data analysis system: A case study on tomato cultivation under different irrigation regimes Pushing the boundaries of aphid detection: An investigation into mmWaveRadar and machine learning synergy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1