Multi source-free domain adaptation based on pseudo-label knowledge mining

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Letters Pub Date : 2024-11-19 DOI:10.1016/j.patrec.2024.11.014
Fang Zhou , Zun Xu , Wei Wei , Lei Zhang
{"title":"Multi source-free domain adaptation based on pseudo-label knowledge mining","authors":"Fang Zhou ,&nbsp;Zun Xu ,&nbsp;Wei Wei ,&nbsp;Lei Zhang","doi":"10.1016/j.patrec.2024.11.014","DOIUrl":null,"url":null,"abstract":"<div><div>MSFDA methods were proposed to train unlabeled target data using a group of source pre-trained models, without directly accessing labeled source domain data. Through transferring knowledge to target domain using pseudo labels obtained by source pre-trained models, existing methods have shown potential for cross-domain classification. However, these models have not directly addressed the negative knowledge transfer caused by incorrect pseudo labels. In this study, we focus on the problem and propose a multi-source-free domain adaptation method based on pseudo-label knowledge mining. Specifically, we first utilize average entropy weighting to compute pseudo labels for target data. Then, we assign a confidence level to each target sample, considering it as either high or low. Finally, we generate mixed augmented target samples and conduct different self-training tasks for those with different confidence to alleviate the negative transfer resulting from inaccurate pseudo labels. Experimental results on three datasets demonstrate the effectiveness of our proposed method.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"187 ","pages":"Pages 80-85"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524003209","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

MSFDA methods were proposed to train unlabeled target data using a group of source pre-trained models, without directly accessing labeled source domain data. Through transferring knowledge to target domain using pseudo labels obtained by source pre-trained models, existing methods have shown potential for cross-domain classification. However, these models have not directly addressed the negative knowledge transfer caused by incorrect pseudo labels. In this study, we focus on the problem and propose a multi-source-free domain adaptation method based on pseudo-label knowledge mining. Specifically, we first utilize average entropy weighting to compute pseudo labels for target data. Then, we assign a confidence level to each target sample, considering it as either high or low. Finally, we generate mixed augmented target samples and conduct different self-training tasks for those with different confidence to alleviate the negative transfer resulting from inaccurate pseudo labels. Experimental results on three datasets demonstrate the effectiveness of our proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于伪标签知识挖掘的多源无域适配
MSFDA 方法的提出是为了使用一组源预训练模型来训练未标记的目标数据,而无需直接访问有标记的源领域数据。通过使用源预训练模型获得的伪标签将知识转移到目标域,现有方法已显示出跨域分类的潜力。然而,这些模型并没有直接解决伪标签不正确所造成的负面知识转移问题。在本研究中,我们聚焦于这一问题,提出了一种基于伪标签知识挖掘的无源多域适应方法。具体来说,我们首先利用平均熵加权计算目标数据的伪标签。然后,我们为每个目标样本分配一个置信度,将其视为高或低。最后,我们生成混合增强的目标样本,并针对不同置信度的样本执行不同的自我训练任务,以减轻伪标签不准确带来的负迁移。在三个数据集上的实验结果证明了我们所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
期刊最新文献
Bilateral symmetry-based augmentation method for improved tooth segmentation in panoramic X-rays GAF-Net: A new automated segmentation method based on multiscale feature fusion and feedback module Segmentation of MRI tumors and pelvic anatomy via cGAN-synthesized data and attention-enhanced U-Net Multichannel image classification based on adaptive attribute profiles Incremental component tree contour computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1