{"title":"Webs and squabs of conics over finite fields","authors":"Nour Alnajjarine , Michel Lavrauw","doi":"10.1016/j.ffa.2024.102544","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is a contribution towards a solution for the longstanding open problem of classifying linear systems of conics over finite fields initiated by L. E. Dickson in 1908, through his study of the projective equivalence classes of pencils of conics in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, for <em>q</em> odd. In this paper a set of complete invariants is determined for the projective equivalence classes of webs and of squabs of conics in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, both for <em>q</em> odd and even. Our approach is mainly geometric, and involves a comprehensive study of the geometric and combinatorial properties of the Veronese surface in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>5</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>. The main contribution is the determination of the distribution of the different types of hyperplanes incident with the <em>K</em>-orbit representatives of points and lines of <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>5</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, where <span><math><mi>K</mi><mo>≅</mo><mrow><mi>PGL</mi></mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, is the subgroup of <span><math><mrow><mi>PGL</mi></mrow><mo>(</mo><mn>6</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> stabilizing the Veronese surface.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"102 ","pages":"Article 102544"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001837","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is a contribution towards a solution for the longstanding open problem of classifying linear systems of conics over finite fields initiated by L. E. Dickson in 1908, through his study of the projective equivalence classes of pencils of conics in , for q odd. In this paper a set of complete invariants is determined for the projective equivalence classes of webs and of squabs of conics in , both for q odd and even. Our approach is mainly geometric, and involves a comprehensive study of the geometric and combinatorial properties of the Veronese surface in . The main contribution is the determination of the distribution of the different types of hyperplanes incident with the K-orbit representatives of points and lines of , where , is the subgroup of stabilizing the Veronese surface.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.