Anh-Khoa Chau, Michael Brun, Pascal Ventura, Hamid Zahrouni, Michel Potier-Ferry
{"title":"Asymptotic Numerical Method for dynamic buckling of shell structures with follower pressure","authors":"Anh-Khoa Chau, Michael Brun, Pascal Ventura, Hamid Zahrouni, Michel Potier-Ferry","doi":"10.1016/j.ijsolstr.2024.113135","DOIUrl":null,"url":null,"abstract":"<div><div>Asymptotic Numerical Method (ANM) is applied to non-linear dynamics of thin-shells subjected to conservative and non-conservative loads such as follower pressure. ANM is decomposed into several stages: the finite element discretization of the non-linear equations of motion of the shell dynamics, a homotopy transformation of the semi-discrete non-linear equations, a perturbation technique to expand the quantities into Taylor series according to the homotopy parameter and the time integration scheme to solve the series of linear problems resulting from the perturbation technique. ANM is applied here with the 7-parameter shell elements thanks to the Enhanced Assumed Strain (EAS) concept and implicit Newmark integration. In the case of non-conservative force, follower pressure also requires to be decomposed in either Taylor series or rational Padé approximants. The academic case of the cylindrical roof with dynamic snap-through phenomenon is investigated for the purpose of comparing ANM strategies and the classical Newton–Raphson (NR) method. Two engineering cases including an I-shaped thin-walled beam and a closed thin-shell cylinder under dynamic external follower pressure are also investigated. ANM turns out to be accurate, robust and efficient in terms of computation time, providing an alternative method to the well-established Newton–Raphson method.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"308 ","pages":"Article 113135"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324004943","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Asymptotic Numerical Method (ANM) is applied to non-linear dynamics of thin-shells subjected to conservative and non-conservative loads such as follower pressure. ANM is decomposed into several stages: the finite element discretization of the non-linear equations of motion of the shell dynamics, a homotopy transformation of the semi-discrete non-linear equations, a perturbation technique to expand the quantities into Taylor series according to the homotopy parameter and the time integration scheme to solve the series of linear problems resulting from the perturbation technique. ANM is applied here with the 7-parameter shell elements thanks to the Enhanced Assumed Strain (EAS) concept and implicit Newmark integration. In the case of non-conservative force, follower pressure also requires to be decomposed in either Taylor series or rational Padé approximants. The academic case of the cylindrical roof with dynamic snap-through phenomenon is investigated for the purpose of comparing ANM strategies and the classical Newton–Raphson (NR) method. Two engineering cases including an I-shaped thin-walled beam and a closed thin-shell cylinder under dynamic external follower pressure are also investigated. ANM turns out to be accurate, robust and efficient in terms of computation time, providing an alternative method to the well-established Newton–Raphson method.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.