{"title":"A chemo-thermo-mechanical coupled phase-field model for complex early-age concrete mesoscale fracture simulations","authors":"Hui Li, Shanyong Wang","doi":"10.1016/j.ijsolstr.2025.113340","DOIUrl":null,"url":null,"abstract":"<div><div>Complex crack propagation at micro/<em>meso-</em>scale in heterogeneous early-age concrete is usually induced by non-uniform shrinkage and thermal expansion during hydration processes, directly affecting the loading-carrying capacity of concrete structures and their systems. Prediction of such early-age fracture is essential for investigating its effects on the macroscopic mechanical performance of concrete and further optimizing structural design. To this end, this study proposes a novel mesoscale hydration-induced fracture modelling method combining a chemo-thermo-mechanical coupled phase-field model and random aggregate models for complex mesoscale early-age concrete fracture simulations. In this method, the Fourier’s law and the Arrhenius’s law are used to simulate heat transfer and hydration reaction in heterogeneous models, respectively. The temperature and hydration degree of solids are fully incorporated into the governing equations of the phase-field regularized cohesive zone model to efficiently simulate complicated chemo-thermally induced fracture, without the need of remeshing, crack tracking or auxiliary fields. The resultant displacement-temperature-hydration degree-damage four-field coupled system of equations is solved using a staggered Newton–Raphson iterative algorithm within the finite element framework. The new method is first verified by a heat convection problem with numerical solutions and a hydration fracture problem of a concrete ring with experimental data. Mesoscale fracture modelling of an early-age concrete square is then carried out to investigate the effects of mesh size, phase-field length scale, boundary conditions, and the distribution and volume fraction of random aggregates, on concrete hydration. It is found that the present method is capable of accurately and robustly modelling chemo-thermally induced mesoscale multi-crack propagation, with insensitivity to mesh size and phase-field length scale. The capacity of modelling complex heterogeneous early-age cracking, as well as its potential for advancing structural design and optimization, is well demonstrated.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"314 ","pages":"Article 113340"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002076832500126X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Complex crack propagation at micro/meso-scale in heterogeneous early-age concrete is usually induced by non-uniform shrinkage and thermal expansion during hydration processes, directly affecting the loading-carrying capacity of concrete structures and their systems. Prediction of such early-age fracture is essential for investigating its effects on the macroscopic mechanical performance of concrete and further optimizing structural design. To this end, this study proposes a novel mesoscale hydration-induced fracture modelling method combining a chemo-thermo-mechanical coupled phase-field model and random aggregate models for complex mesoscale early-age concrete fracture simulations. In this method, the Fourier’s law and the Arrhenius’s law are used to simulate heat transfer and hydration reaction in heterogeneous models, respectively. The temperature and hydration degree of solids are fully incorporated into the governing equations of the phase-field regularized cohesive zone model to efficiently simulate complicated chemo-thermally induced fracture, without the need of remeshing, crack tracking or auxiliary fields. The resultant displacement-temperature-hydration degree-damage four-field coupled system of equations is solved using a staggered Newton–Raphson iterative algorithm within the finite element framework. The new method is first verified by a heat convection problem with numerical solutions and a hydration fracture problem of a concrete ring with experimental data. Mesoscale fracture modelling of an early-age concrete square is then carried out to investigate the effects of mesh size, phase-field length scale, boundary conditions, and the distribution and volume fraction of random aggregates, on concrete hydration. It is found that the present method is capable of accurately and robustly modelling chemo-thermally induced mesoscale multi-crack propagation, with insensitivity to mesh size and phase-field length scale. The capacity of modelling complex heterogeneous early-age cracking, as well as its potential for advancing structural design and optimization, is well demonstrated.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.