Shuanglan Lin , Lei Xu , Zhixing Guo , Dingcheng Zhang , Pangwei Zeng , Yuexin Tang , Hongliang Pei
{"title":"Superpixel-based principal feature clustering annotation method for dual-phase microstructure segmentation","authors":"Shuanglan Lin , Lei Xu , Zhixing Guo , Dingcheng Zhang , Pangwei Zeng , Yuexin Tang , Hongliang Pei","doi":"10.1016/j.matchar.2024.114523","DOIUrl":null,"url":null,"abstract":"<div><div>Metallographic analysis is one of the most commonly used techniques by materials scientists for studying metal materials. The deep learning methods, which have been widely applied in metallographic images analysis, demonstrate excellent performance in this task. However, the optimization of deep learning models often relies on a substantial amount of accurately labeled samples for effective supervision. To address this issue, this paper proposes a novel automatic annotation method based on brightness and spatial distribution which is suitable for deep learning-based segmentation of optical dual-phase metallographic microstructure. The proposed automatic annotated method includes the superpixel segmentation, principal feature extraction, and clustering algorithm therefore it is referred as the superpixel-based principal feature clustering annotation (SPFCA) method. SPFCA employs discriminative criteria similar to those used by metallurgists to differentiate between metallographic structures. Furthermore, it can mitigate the occasional errors inherent in manual annotation, leading to improved performance compared to models trained with expert annotations. Experimental validation was conducted using four self-built datasets with different image qualities to test the performance of models from different perspective. Initially, hyperparameter optimization for the SPFCA method tailored to our dataset was performed. Subsequently, SPFCA was utilized to guide the optimization of the convolutional neural network employed for segmentation. The results demonstrate that the segmentation model optimized with SPFCA guidance achieved an F1 score of 0.9226 in the single dataset without the need for manual labeling, surpassing the segmentation models optimized with expert annotations.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114523"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324009045","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Metallographic analysis is one of the most commonly used techniques by materials scientists for studying metal materials. The deep learning methods, which have been widely applied in metallographic images analysis, demonstrate excellent performance in this task. However, the optimization of deep learning models often relies on a substantial amount of accurately labeled samples for effective supervision. To address this issue, this paper proposes a novel automatic annotation method based on brightness and spatial distribution which is suitable for deep learning-based segmentation of optical dual-phase metallographic microstructure. The proposed automatic annotated method includes the superpixel segmentation, principal feature extraction, and clustering algorithm therefore it is referred as the superpixel-based principal feature clustering annotation (SPFCA) method. SPFCA employs discriminative criteria similar to those used by metallurgists to differentiate between metallographic structures. Furthermore, it can mitigate the occasional errors inherent in manual annotation, leading to improved performance compared to models trained with expert annotations. Experimental validation was conducted using four self-built datasets with different image qualities to test the performance of models from different perspective. Initially, hyperparameter optimization for the SPFCA method tailored to our dataset was performed. Subsequently, SPFCA was utilized to guide the optimization of the convolutional neural network employed for segmentation. The results demonstrate that the segmentation model optimized with SPFCA guidance achieved an F1 score of 0.9226 in the single dataset without the need for manual labeling, surpassing the segmentation models optimized with expert annotations.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.