Shuyao Liu , Xibin Wang , Hongtao Chen , Pai Wang , Zhibing Liu
{"title":"Investigation on micro-mechanics properties of machined metamorphic layer based on crystal plasticity finite element method","authors":"Shuyao Liu , Xibin Wang , Hongtao Chen , Pai Wang , Zhibing Liu","doi":"10.1016/j.matchar.2024.114548","DOIUrl":null,"url":null,"abstract":"<div><div>Surface materials endure significant mechanical and thermal loads during machining, leading to microstructural changes and the formation of metamorphic layers. These layers exhibit altered crystallographic characteristics, such as grain size, misorientation angles, and dislocation density, resulting in mechanical properties that differ from the bulk material. This study examines the microstructural evolution of the metamorphic layer using electron back-scattered diffraction (EBSD) and X-ray diffraction (XRD). Based on microstructure characterization, a 3D reconstruction method was developed using a representative volume element (RVE). The crystal plasticity finite element method (CPFEM) was employed to establish the relationship between the microstructure and micromechanical properties, including microhardness, elastic modulus, and yield stress. The proposed method was validated by comparing simulation results with experimental data obtained from micro-pillar compression tests and nanoindentation tests. The results demonstrated a strong correlation in stress-strain curves, and the microhardness measurement error at indentation depths of 400 nm was less than 10 %.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114548"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104458032400929X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Surface materials endure significant mechanical and thermal loads during machining, leading to microstructural changes and the formation of metamorphic layers. These layers exhibit altered crystallographic characteristics, such as grain size, misorientation angles, and dislocation density, resulting in mechanical properties that differ from the bulk material. This study examines the microstructural evolution of the metamorphic layer using electron back-scattered diffraction (EBSD) and X-ray diffraction (XRD). Based on microstructure characterization, a 3D reconstruction method was developed using a representative volume element (RVE). The crystal plasticity finite element method (CPFEM) was employed to establish the relationship between the microstructure and micromechanical properties, including microhardness, elastic modulus, and yield stress. The proposed method was validated by comparing simulation results with experimental data obtained from micro-pillar compression tests and nanoindentation tests. The results demonstrated a strong correlation in stress-strain curves, and the microhardness measurement error at indentation depths of 400 nm was less than 10 %.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.