Design of large-spacing, high-stability PANI-NixV2O5 nanobelts as cathode for aqueous zinc-ion batteries using an organic-inorganic co-embedding strategy

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-11-24 DOI:10.1016/j.jpowsour.2024.235912
Shoujing Mao, Ying Wu, Shurong Xu, Tianyi Xiao, Yangyang Li, Zhongkai Li, Xiaofang Pan, Bo Yuan, Yafen Xu, Hao Wen, Qingxuan Sui, Yuan Quan, Jun Liu
{"title":"Design of large-spacing, high-stability PANI-NixV2O5 nanobelts as cathode for aqueous zinc-ion batteries using an organic-inorganic co-embedding strategy","authors":"Shoujing Mao,&nbsp;Ying Wu,&nbsp;Shurong Xu,&nbsp;Tianyi Xiao,&nbsp;Yangyang Li,&nbsp;Zhongkai Li,&nbsp;Xiaofang Pan,&nbsp;Bo Yuan,&nbsp;Yafen Xu,&nbsp;Hao Wen,&nbsp;Qingxuan Sui,&nbsp;Yuan Quan,&nbsp;Jun Liu","doi":"10.1016/j.jpowsour.2024.235912","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous zinc-ion batteries (AZIBs), distinguished by their high safety and cost-effectiveness, hold significant promise for grid-level energy storage systems. However, the strong interactions between zinc ions and the host lattice of materials lead to suboptimal cycling stability and rate performance. To address this, we present a novel superlattice structure incorporating conductive polymer (PANI) and metal cation (Ni<sup>2+</sup>) double interlayers, which can be utilized as cathodes for AZIBs. The incorporation of the conductive host polymer polyaniline (PANI) reduces the valence state of vanadium, enhances the electrical conductivity, and effectively expands the channels for zinc ion insertion. Additionally, metal cations (Ni<sup>2+</sup>) can effectively induce the synergistic interactions with zinc ions, thereby mitigating the electrostatic interactions with the V<sub>2</sub>O<sub>5</sub> host. Consequently, the assembled Zn//PANI-Ni<sub>x</sub>V<sub>2</sub>O<sub>5</sub> (PNV) battery exhibits a specific capacity of up to 470 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup>, and retains 89.5 % of its capacity after 1000 cycles at 5 A g<sup>−1</sup>.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"628 ","pages":"Article 235912"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324018640","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc-ion batteries (AZIBs), distinguished by their high safety and cost-effectiveness, hold significant promise for grid-level energy storage systems. However, the strong interactions between zinc ions and the host lattice of materials lead to suboptimal cycling stability and rate performance. To address this, we present a novel superlattice structure incorporating conductive polymer (PANI) and metal cation (Ni2+) double interlayers, which can be utilized as cathodes for AZIBs. The incorporation of the conductive host polymer polyaniline (PANI) reduces the valence state of vanadium, enhances the electrical conductivity, and effectively expands the channels for zinc ion insertion. Additionally, metal cations (Ni2+) can effectively induce the synergistic interactions with zinc ions, thereby mitigating the electrostatic interactions with the V2O5 host. Consequently, the assembled Zn//PANI-NixV2O5 (PNV) battery exhibits a specific capacity of up to 470 mAh g−1 at 0.1 A g−1, and retains 89.5 % of its capacity after 1000 cycles at 5 A g−1.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用有机-无机共嵌入策略设计大间距、高稳定性 PANI-NixV2O5 纳米颗粒作为锌离子水电池的阴极
锌离子水电池(AZIBs)具有安全性高、成本效益高的特点,在电网级储能系统中大有可为。然而,锌离子与材料主晶格之间的强相互作用导致循环稳定性和速率性能不理想。为解决这一问题,我们提出了一种新型超晶格结构,其中包含导电聚合物(PANI)和金属阳离子(Ni2+)双层夹层,可用作 AZIB 的阴极。导电主聚合物聚苯胺(PANI)的加入降低了钒的价态,增强了导电性,并有效扩大了锌离子的插入通道。此外,金属阳离子(Ni2+)能有效地诱导锌离子的协同作用,从而减轻与 V2O5 主基的静电作用。因此,组装好的 Zn//PANI-NixV2O5 (PNV) 电池在 0.1 A g-1 的条件下显示出高达 470 mAh g-1 的比容量,并且在 5 A g-1 条件下循环 1000 次后仍能保持 89.5% 的容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
Jackfruit waste derived oxygen-self-doped porous carbon for aqueous Zn-ion supercapacitors A free-standing sulfide polyacrylonitrile/reduced graphene oxide film cathode with nacre-like architecture for high-performance lithium-sulfur batteries Enhanced chemical stability and H+/V4+ selectivity of microporous sulfonated polyimide via a triptycene-based crosslinker Real-vehicle experimental validation of a predictive energy management strategy for fuel cell vehicles Heuristic method for electric vehicle charging in a Spanish microgrid: Leveraging renewable energy surplus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1