Enhanced chemical stability and H+/V4+ selectivity of microporous sulfonated polyimide via a triptycene-based crosslinker

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-12-01 DOI:10.1016/j.jpowsour.2024.235964
Jiachen Chu , Luxin Sun , Han Zhang , Jianxin Li , Xiaohua Ma
{"title":"Enhanced chemical stability and H+/V4+ selectivity of microporous sulfonated polyimide via a triptycene-based crosslinker","authors":"Jiachen Chu ,&nbsp;Luxin Sun ,&nbsp;Han Zhang ,&nbsp;Jianxin Li ,&nbsp;Xiaohua Ma","doi":"10.1016/j.jpowsour.2024.235964","DOIUrl":null,"url":null,"abstract":"<div><div>Long durability of sulfonated polyimide in vanadium redox flow battery (VRFB) is urgently required to be solved. Herein, we synthesize a triptycene-based crosslinker and use it as chemical crosslinking point to modify a linear sulfonated polyimide for promoting its antioxidative stability. The novel triptycene-based cross-linked sulfonated polyimide (TCSPI-X) membranes featuring covalently crosslinked network display lower water uptake and swelling ratio than the commercial perfluorinated ionomer membrane (Nafion 117) membrane. More importantly, unnoticeable proton conductivity loss is appeared. We speculate this is because of the covalently crosslinking structure provides stable proton transportation channels, and the formation of micropores induced by rigid triptycene unit decrease proton migration resistance. In which, the TCSPI-5 (with 5 % molar triptycene unit) exhibit higher voltage efficiency as compared with the pristine membrane TCSPI-0. Combined with the excellent vanadium ions resistance, the TCSPI-5 reaches energy efficiency of 78 % at the current density of 140 mA cm<sup>−2</sup>. In addition, TCSPI-5 also shows high oxidation resistance even under strong acid and pentavalent vanadium ions (V<sup>5+</sup>) conditions. The above results suggest the potential of TCSPI-X membranes in VRFB application.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"629 ","pages":"Article 235964"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324019165","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Long durability of sulfonated polyimide in vanadium redox flow battery (VRFB) is urgently required to be solved. Herein, we synthesize a triptycene-based crosslinker and use it as chemical crosslinking point to modify a linear sulfonated polyimide for promoting its antioxidative stability. The novel triptycene-based cross-linked sulfonated polyimide (TCSPI-X) membranes featuring covalently crosslinked network display lower water uptake and swelling ratio than the commercial perfluorinated ionomer membrane (Nafion 117) membrane. More importantly, unnoticeable proton conductivity loss is appeared. We speculate this is because of the covalently crosslinking structure provides stable proton transportation channels, and the formation of micropores induced by rigid triptycene unit decrease proton migration resistance. In which, the TCSPI-5 (with 5 % molar triptycene unit) exhibit higher voltage efficiency as compared with the pristine membrane TCSPI-0. Combined with the excellent vanadium ions resistance, the TCSPI-5 reaches energy efficiency of 78 % at the current density of 140 mA cm−2. In addition, TCSPI-5 also shows high oxidation resistance even under strong acid and pentavalent vanadium ions (V5+) conditions. The above results suggest the potential of TCSPI-X membranes in VRFB application.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三叶烯基交联剂增强了微孔磺化聚酰亚胺的化学稳定性和H+/V4+选择性
磺化聚酰亚胺在钒氧化还原液流电池(VRFB)中的长寿命是目前迫切需要解决的问题。本文合成了一种基于三叶烯的交联剂,并将其作为化学交联点对线性磺化聚酰亚胺进行改性,以提高其抗氧化稳定性。新型三甲烯基交联磺化聚酰亚胺(TCSPI-X)膜具有共价交联网络,其吸水性和溶胀率低于商用全氟离聚体膜(Nafion 117)。更重要的是,出现了不明显的质子电导率损失。我们推测这是由于共价交联结构提供了稳定的质子运输通道,而刚性三甲烯单元诱导形成的微孔降低了质子迁移阻力。其中,与原始膜TCSPI-0相比,具有5%摩尔三甲烯单位的TCSPI-5表现出更高的电压效率。结合优异的抗钒离子性能,TCSPI-5在140 mA cm−2的电流密度下达到78%的能量效率。此外,TCSPI-5在强酸和五价钒离子(V5+)条件下也表现出较高的抗氧化性。以上结果提示TCSPI-X膜在VRFB中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
Jackfruit waste derived oxygen-self-doped porous carbon for aqueous Zn-ion supercapacitors A free-standing sulfide polyacrylonitrile/reduced graphene oxide film cathode with nacre-like architecture for high-performance lithium-sulfur batteries Enhanced chemical stability and H+/V4+ selectivity of microporous sulfonated polyimide via a triptycene-based crosslinker Real-vehicle experimental validation of a predictive energy management strategy for fuel cell vehicles Heuristic method for electric vehicle charging in a Spanish microgrid: Leveraging renewable energy surplus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1