A fast-converging Bayesian tensor inference method for wireless channel estimation

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Processing Pub Date : 2024-11-19 DOI:10.1016/j.sigpro.2024.109770
Yuzhe Sun, Wei Wang, Yuanfeng He, Yufan Wang
{"title":"A fast-converging Bayesian tensor inference method for wireless channel estimation","authors":"Yuzhe Sun,&nbsp;Wei Wang,&nbsp;Yuanfeng He,&nbsp;Yufan Wang","doi":"10.1016/j.sigpro.2024.109770","DOIUrl":null,"url":null,"abstract":"<div><div>In variational inference-based tensor channel estimation, high order singular value decomposition (HOSVD) initialization effectively captures the latent features of factor matrices, and accelerates convergence speed. However, HOSVD-based initialization further exacerbates the overfitting issue of the tensor variation Bayesian (TVB) method on each factor matrix element, leading to inaccurate rank estimation, and then significantly degrading channel parameter estimation performance. To prevent overfitting, we propose a new TVB method based on array spatial prior (ASP), which incorporates space correlations in tensor data, without introducing additional hierarchical probabilistic models. By analyzing the inferred posterior distribution and the non-decreasing property of the evidence lower bound (ELBO), we confirm the favorable convergence characteristics and global search capability of the proposed algorithm. Through simulations and experiments, we observe that compared to traditional TVB, the proposed algorithm achieves accurate automatic rank determination (ARD) in just a few iterations, significantly reducing convergence time. Meanwhile, it demonstrates superior parameter estimation accuracy with fewer iterations than the compared method.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"230 ","pages":"Article 109770"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003906","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In variational inference-based tensor channel estimation, high order singular value decomposition (HOSVD) initialization effectively captures the latent features of factor matrices, and accelerates convergence speed. However, HOSVD-based initialization further exacerbates the overfitting issue of the tensor variation Bayesian (TVB) method on each factor matrix element, leading to inaccurate rank estimation, and then significantly degrading channel parameter estimation performance. To prevent overfitting, we propose a new TVB method based on array spatial prior (ASP), which incorporates space correlations in tensor data, without introducing additional hierarchical probabilistic models. By analyzing the inferred posterior distribution and the non-decreasing property of the evidence lower bound (ELBO), we confirm the favorable convergence characteristics and global search capability of the proposed algorithm. Through simulations and experiments, we observe that compared to traditional TVB, the proposed algorithm achieves accurate automatic rank determination (ARD) in just a few iterations, significantly reducing convergence time. Meanwhile, it demonstrates superior parameter estimation accuracy with fewer iterations than the compared method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于无线信道估计的快速融合贝叶斯张量推理方法
在基于变分推理的张量信道估计中,高阶奇异值分解(HOSVD)初始化能有效捕捉因子矩阵的潜在特征,并加快收敛速度。然而,基于高阶奇异值分解的初始化会进一步加剧张量变化贝叶斯(TVB)方法对每个因子矩阵元素的过拟合问题,导致秩估计不准确,进而显著降低信道参数估计性能。为了防止过拟合,我们提出了一种基于阵列空间先验(ASP)的新 TVB 方法,该方法将空间相关性纳入了张量数据中,而无需引入额外的分层概率模型。通过分析推断的后验分布和证据下界(ELBO)的非递减特性,我们证实了所提算法的良好收敛特性和全局搜索能力。通过仿真和实验,我们发现与传统的 TVB 相比,所提出的算法只需几次迭代就能实现精确的自动秩确定(ARD),大大缩短了收敛时间。同时,与其他方法相比,该算法以更少的迭代次数实现了更高的参数估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
期刊最新文献
Editorial Board Multifunctional adversarial examples: A novel mechanism for authenticatable privacy protection of images A saddlepoint approximation for the smoothed periodogram Progressive Gaussian filtering for nonlinear uncertain systems based on Gaussian process models A privacy-preserving license plate encryption scheme based on an improved YOLOv8 image recognition algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1