{"title":"Robust adaptive beamforming with interference-plus-noise covariance matrix reconstruction for FDA-MIMO radar","authors":"Yudian Hou, Wen-Qin Wang","doi":"10.1016/j.sigpro.2025.109929","DOIUrl":null,"url":null,"abstract":"<div><div>Frequency-diverse array multiple-input-multiple-output (FDA-MIMO) antenna offers promising potential applications such as joint range-angle estimation, secure communication, and dual radar-communication systems. However, robust adaptive beamforming (RAB) for FDA-MIMO plays an important role, but it has not been well explored. In this paper, we identify that both steering vector and interference-plus-noise covariance (INC) matrix in FDA-MIMO antenna are time-variant, which may cause significant performance degradation. To address this issue for practical applications, we develop a RAB beamformer for FDA-MIMO by employing a two-dimensional decoupled atomic norm minimization (2D-DANM) approach for the INC matrix reconstruction. Unlike traditional methods that rely on multiple data snapshots, the proposed approach requires only a single snapshot, which can efficiently reconstruct the INC matrix to mitigate the time-variance. The steering vector is corrected through the reconstructed INC matrix by solving a quadratically constrained quadratic programming (QCQP) problem. The superiority is verified with simulation results, particularly in the term of output signal-to-interference-plus-noise ratio (SINR).</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"232 ","pages":"Article 109929"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425000441","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Frequency-diverse array multiple-input-multiple-output (FDA-MIMO) antenna offers promising potential applications such as joint range-angle estimation, secure communication, and dual radar-communication systems. However, robust adaptive beamforming (RAB) for FDA-MIMO plays an important role, but it has not been well explored. In this paper, we identify that both steering vector and interference-plus-noise covariance (INC) matrix in FDA-MIMO antenna are time-variant, which may cause significant performance degradation. To address this issue for practical applications, we develop a RAB beamformer for FDA-MIMO by employing a two-dimensional decoupled atomic norm minimization (2D-DANM) approach for the INC matrix reconstruction. Unlike traditional methods that rely on multiple data snapshots, the proposed approach requires only a single snapshot, which can efficiently reconstruct the INC matrix to mitigate the time-variance. The steering vector is corrected through the reconstructed INC matrix by solving a quadratically constrained quadratic programming (QCQP) problem. The superiority is verified with simulation results, particularly in the term of output signal-to-interference-plus-noise ratio (SINR).
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.