Nitrogen-doped CdS/TiO2 nanorods heterojunction photoanode for efficient and stable photoelectrochemical water splitting

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-11-23 DOI:10.1016/j.jpowsour.2024.235883
Jianglin Tu , Jinwang Li , Zhefei Pan , Xun Zhu , Dingding Ye , Yang Yang , Hong Wang , Liang An , Rong Chen , Qiang Liao
{"title":"Nitrogen-doped CdS/TiO2 nanorods heterojunction photoanode for efficient and stable photoelectrochemical water splitting","authors":"Jianglin Tu ,&nbsp;Jinwang Li ,&nbsp;Zhefei Pan ,&nbsp;Xun Zhu ,&nbsp;Dingding Ye ,&nbsp;Yang Yang ,&nbsp;Hong Wang ,&nbsp;Liang An ,&nbsp;Rong Chen ,&nbsp;Qiang Liao","doi":"10.1016/j.jpowsour.2024.235883","DOIUrl":null,"url":null,"abstract":"<div><div>Photoelectrochemical water splitting represents a promising route for converting solar energy into hydrogen, but sluggish reaction kinetics associated with inefficient charge separation and migration, and poor stability limit solar-to-hydrogen conversion. In this work, we develop a N-doped-CdS/TiO<sub>2</sub>-nanorods heterojunction photoanode for photoelectrochemical water splitting by anchoring CdS on TiO<sub>2</sub> nanorods followed by nitrogen doping. The light harvesting is significantly enhanced and the charge separation and migration are promoted due to the formed heterojunction and nitrogen doping, which greatly enhances the water oxidation reaction. As a result, the photoelectrochemical cell with the optimized N-doped-CdS/TiO<sub>2</sub>-nanorods heterojunction photoanode yields a hydrogen production rate of 42.6 μmol cm<sup>−2</sup> h<sup>−1</sup>, which is 2.51 times higher than that of the TiO<sub>2</sub>-nanorods photoanode. In particular, doping nitrogen atoms into CdS greatly alleviates the photocorrosion problem. Therefore, the newly-developed photoanode exhibits excellent stability under a continuous 10-h running.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"628 ","pages":"Article 235883"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324018354","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photoelectrochemical water splitting represents a promising route for converting solar energy into hydrogen, but sluggish reaction kinetics associated with inefficient charge separation and migration, and poor stability limit solar-to-hydrogen conversion. In this work, we develop a N-doped-CdS/TiO2-nanorods heterojunction photoanode for photoelectrochemical water splitting by anchoring CdS on TiO2 nanorods followed by nitrogen doping. The light harvesting is significantly enhanced and the charge separation and migration are promoted due to the formed heterojunction and nitrogen doping, which greatly enhances the water oxidation reaction. As a result, the photoelectrochemical cell with the optimized N-doped-CdS/TiO2-nanorods heterojunction photoanode yields a hydrogen production rate of 42.6 μmol cm−2 h−1, which is 2.51 times higher than that of the TiO2-nanorods photoanode. In particular, doping nitrogen atoms into CdS greatly alleviates the photocorrosion problem. Therefore, the newly-developed photoanode exhibits excellent stability under a continuous 10-h running.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效稳定光电化学水分离的氮掺杂 CdS/TiO2 纳米棒异质结光电阳极
光电化学分水是将太阳能转化为氢气的一条很有前景的途径,但与电荷分离和迁移效率低有关的反应动力学缓慢以及稳定性差限制了太阳能到氢气的转化。在这项工作中,我们通过在 TiO2 纳米棒上锚定 CdS,然后掺入氮,开发出一种用于光电化学水分离的掺氮 CdS/TiO2 纳米棒异质结光电阳极。由于形成的异质结和氮掺杂促进了电荷分离和迁移,从而大大增强了水的氧化反应,光收集能力明显增强。因此,采用优化的掺氮-CdS/TiO2-纳米异质结光电阳极的光电化学电池的产氢率为 42.6 μmol cm-2 h-1,是 TiO2 纳米光电阳极的 2.51 倍。特别是在 CdS 中掺入氮原子大大缓解了光腐蚀问题。因此,新开发的光阳极在连续运行 10 小时的情况下表现出卓越的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
Jackfruit waste derived oxygen-self-doped porous carbon for aqueous Zn-ion supercapacitors A free-standing sulfide polyacrylonitrile/reduced graphene oxide film cathode with nacre-like architecture for high-performance lithium-sulfur batteries Enhanced chemical stability and H+/V4+ selectivity of microporous sulfonated polyimide via a triptycene-based crosslinker Real-vehicle experimental validation of a predictive energy management strategy for fuel cell vehicles Heuristic method for electric vehicle charging in a Spanish microgrid: Leveraging renewable energy surplus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1