Significantly improved energy storage performance of polyetherimide-based dielectric composites via employing core-shell organic-semiconductor@BaTiO3 nanoparticles

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-11-25 DOI:10.1016/j.jpowsour.2024.235888
Hao Tan , Hao Zhong , Liwen Deng , Jinlong Zhou , Ao Xu , Dang Wu , Sheng Chen
{"title":"Significantly improved energy storage performance of polyetherimide-based dielectric composites via employing core-shell organic-semiconductor@BaTiO3 nanoparticles","authors":"Hao Tan ,&nbsp;Hao Zhong ,&nbsp;Liwen Deng ,&nbsp;Jinlong Zhou ,&nbsp;Ao Xu ,&nbsp;Dang Wu ,&nbsp;Sheng Chen","doi":"10.1016/j.jpowsour.2024.235888","DOIUrl":null,"url":null,"abstract":"<div><div>With fast development of modern industries and electrical systems, polymer dielectrics are urgently demanded to have high discharged energy density (<em>U</em><sub><em>d</em></sub>) in elevated temperature. In this paper, novel core-shell poly [2-((3,6,7,10,11-pentakis (hexyloxy) triphenylene-2-yl) oxy) ethyl methacrylate] (PHT) coated barium titanate nanoparticles (BT) (denoted as PHT@BT) are prepared, and then incorporate into polyetherimide (PEI) matrix via solution blending method. Semi-conductive organic shell layer can not only promote the dispersion and compatibility of BT nanoparticles but also construct deep trap. As a result, 0.3 wt% PHT@BT/PEI composites achieve maximal <em>U</em><sub><em>d</em></sub> of 7.62 J cm<sup>−3</sup> at 641 MV m<sup>−1</sup> and room temperature, which is 1.93 times that of pure PEI film (3.93 J cm<sup>−3</sup> at 461 MV m<sup>−1</sup>). Importantly, the <em>U</em><sub><em>d</em></sub> of 4.86 J cm<sup>−3</sup> is obtained at 150 °C. This work provides superior interfacial modifier for inorganic nanofiller, which is of great significance for the fabrication of polymer-based nanocomposites with superior <em>U</em><sub><em>d</em></sub>.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"628 ","pages":"Article 235888"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324018408","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With fast development of modern industries and electrical systems, polymer dielectrics are urgently demanded to have high discharged energy density (Ud) in elevated temperature. In this paper, novel core-shell poly [2-((3,6,7,10,11-pentakis (hexyloxy) triphenylene-2-yl) oxy) ethyl methacrylate] (PHT) coated barium titanate nanoparticles (BT) (denoted as PHT@BT) are prepared, and then incorporate into polyetherimide (PEI) matrix via solution blending method. Semi-conductive organic shell layer can not only promote the dispersion and compatibility of BT nanoparticles but also construct deep trap. As a result, 0.3 wt% PHT@BT/PEI composites achieve maximal Ud of 7.62 J cm−3 at 641 MV m−1 and room temperature, which is 1.93 times that of pure PEI film (3.93 J cm−3 at 461 MV m−1). Importantly, the Ud of 4.86 J cm−3 is obtained at 150 °C. This work provides superior interfacial modifier for inorganic nanofiller, which is of great significance for the fabrication of polymer-based nanocomposites with superior Ud.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用核壳有机半导体@BaTiO3 纳米粒子显著提高聚醚酰亚胺基介电复合材料的储能性能
随着现代工业和电气系统的快速发展,迫切需要在高温下具有高放电能量密度(Ud)的聚合物电介质。本文制备了新型核壳聚[2-((3,6,7,10,11-五(己氧基)三亚苯-2-基)氧基)甲基丙烯酸乙酯](PHT)包覆钛酸钡纳米粒子(BT)(简称 PHT@BT),并通过溶液共混法将其掺入聚醚酰亚胺(PEI)基体中。半导电有机外壳层不仅能促进 BT 纳米粒子的分散和相容性,还能构建深阱。因此,0.3 wt% PHT@BT/PEI 复合材料在 641 MV m-1 和室温条件下的最大 Ud 为 7.62 J cm-3,是纯 PEI 薄膜(在 461 MV m-1 条件下为 3.93 J cm-3)的 1.93 倍。重要的是,在 150 °C 时,Ud 值为 4.86 J cm-3。这项工作为无机纳米填料提供了优异的界面改性剂,对于制备具有优异 Ud 的聚合物基纳米复合材料具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
Jackfruit waste derived oxygen-self-doped porous carbon for aqueous Zn-ion supercapacitors A free-standing sulfide polyacrylonitrile/reduced graphene oxide film cathode with nacre-like architecture for high-performance lithium-sulfur batteries Enhanced chemical stability and H+/V4+ selectivity of microporous sulfonated polyimide via a triptycene-based crosslinker Real-vehicle experimental validation of a predictive energy management strategy for fuel cell vehicles Heuristic method for electric vehicle charging in a Spanish microgrid: Leveraging renewable energy surplus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1