Sabina Deutschmann, Stefan Theodore Täuber, Lukas Rimle, Olivier Biner, Martin Schori, Ana-Marija Stanic, Christoph von Ballmoos
{"title":"Modulating Liposome Surface Charge for Maximized ATP Regeneration in Synthetic Nanovesicles.","authors":"Sabina Deutschmann, Stefan Theodore Täuber, Lukas Rimle, Olivier Biner, Martin Schori, Ana-Marija Stanic, Christoph von Ballmoos","doi":"10.1021/acssynbio.4c00487","DOIUrl":null,"url":null,"abstract":"<p><p>In vitro reconstructed minimal respiratory chains are powerful tools to investigate molecular interactions between the different enzyme components and how they are influenced by their environment. One such system is the coreconstitution of the terminal cytochrome <i>bo</i><sub>3</sub> oxidase and the ATP synthase from <i>Escherichia coli</i> into liposomes, where the ATP synthase activity is driven through a proton motive force (<i>pmf</i>) created by the <i>bo</i><sub>3</sub> oxidase. The proton pumping activity of the <i>bo</i><sub>3</sub> oxidase is initiated using the artificial electron mediator short-chain ubiquinone and electron source DTT. Here, we extend this system and use either complex II or NDH-2 and succinate or NADH, respectively, as electron entry points employing the natural long-chain ubiquinone Q<sub>8</sub> or Q<sub>10</sub>. By testing different lipid compositions, we identify that negatively charged lipids are a prerequisite to allow effective NDH-2 activity. Simultaneously, negatively charged lipids decrease the overall <i>pmf</i> formation and ATP synthesis rates. We find that orientation of the <i>bo</i><sub>3</sub> oxidase in liposomal membranes is governed by electrostatic interactions between enzyme and membrane surface, where positively charged lipids yield the desired <i>bo</i><sub>3</sub> oxidase orientation but hinder reduction of the quinone pool by NDH-2. To overcome this conundrum, we exploit ionizable lipids, which are either neutral or positively charged depending on the pH value. We first coreconstituted <i>bo</i><sub>3</sub> oxidase and ATP synthase into temporarily positively charged liposomes, followed by fusion with negatively charged empty liposomes at low pH. An increase of the pH to physiological values renders these proteoliposomes overall negatively charged, making them compatible with quinone reduction via NDH-2. Using this strategy, we not only succeeded in orienting the <i>bo</i><sub>3</sub> oxidase essentially unidirectionally into liposomes but also found up to 3-fold increased ATP synthesis rates through the usage of natural, long-chain quinones in combination with the substrate NADH compared to the synthetic electron donor/mediator pair.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00487","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In vitro reconstructed minimal respiratory chains are powerful tools to investigate molecular interactions between the different enzyme components and how they are influenced by their environment. One such system is the coreconstitution of the terminal cytochrome bo3 oxidase and the ATP synthase from Escherichia coli into liposomes, where the ATP synthase activity is driven through a proton motive force (pmf) created by the bo3 oxidase. The proton pumping activity of the bo3 oxidase is initiated using the artificial electron mediator short-chain ubiquinone and electron source DTT. Here, we extend this system and use either complex II or NDH-2 and succinate or NADH, respectively, as electron entry points employing the natural long-chain ubiquinone Q8 or Q10. By testing different lipid compositions, we identify that negatively charged lipids are a prerequisite to allow effective NDH-2 activity. Simultaneously, negatively charged lipids decrease the overall pmf formation and ATP synthesis rates. We find that orientation of the bo3 oxidase in liposomal membranes is governed by electrostatic interactions between enzyme and membrane surface, where positively charged lipids yield the desired bo3 oxidase orientation but hinder reduction of the quinone pool by NDH-2. To overcome this conundrum, we exploit ionizable lipids, which are either neutral or positively charged depending on the pH value. We first coreconstituted bo3 oxidase and ATP synthase into temporarily positively charged liposomes, followed by fusion with negatively charged empty liposomes at low pH. An increase of the pH to physiological values renders these proteoliposomes overall negatively charged, making them compatible with quinone reduction via NDH-2. Using this strategy, we not only succeeded in orienting the bo3 oxidase essentially unidirectionally into liposomes but also found up to 3-fold increased ATP synthesis rates through the usage of natural, long-chain quinones in combination with the substrate NADH compared to the synthetic electron donor/mediator pair.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.