Fangxu Sun, Huafeng Wang, Jing Wu, Imran H Quraishi, Yalan Zhang, Maysam Pedram, Benbo Gao, Elizabeth A Jonas, Viet Nguyen, Sijia Wu, Omar S Mabrouk, Paymaan Jafar-Nejad, Leonard K Kaczmarek
{"title":"Molecular Profiling of Mouse Models of Loss or Gain of Function of the KCNT1 (Slack) Potassium Channel and Antisense Oligonucleotide Treatment.","authors":"Fangxu Sun, Huafeng Wang, Jing Wu, Imran H Quraishi, Yalan Zhang, Maysam Pedram, Benbo Gao, Elizabeth A Jonas, Viet Nguyen, Sijia Wu, Omar S Mabrouk, Paymaan Jafar-Nejad, Leonard K Kaczmarek","doi":"10.3390/biom14111397","DOIUrl":null,"url":null,"abstract":"<p><p>The potassium sodium-activated channel subtype T member 1 (<i>KCNT1</i>) gene encodes the Slack channel K<sub>Na</sub>1.1, which is expressed in neurons throughout the brain. Gain-of-function variants in <i>KCNT1</i> are associated with a spectrum of epilepsy syndromes, and mice carrying those variants exhibit a robust phenotype similar to that observed in patients. <i>Kcnt1</i> knockout (KO) mice, however, have a normal lifespan without any epileptic phenotype. To understand the molecular differences between these two models, we conducted a comprehensive proteomic analysis of the cerebral cortices of <i>Kcnt1</i> KO and <i>Kcnt1</i><sup>R455H/+</sup> mice, an animal model bearing a cytoplasmic C-terminal mutation homologous to a human R474H variant that results in EIMFS. The greatest change observed in <i>Kcnt1</i> KO mice compared to the wild-type mice was the increased expression of multiple proteins of the inner mitochondrial membrane. Electron microscopy studies of cortical mitochondria from <i>Kcnt1</i> KO mice further confirmed a significant increase in the density of mitochondrial cristae compared to that in wild-type mice. <i>Kcnt1</i> reduction by a murine-specific <i>Kcnt1</i> antisense oligonucleotide (ASO) in <i>Kcnt1</i><sup>R455H/+</sup> mice partially corrected the proteomic dysregulations in the disease model. The results support the hypothesis that ASO-mediated <i>KCNT1</i> reduction could be therapeutically useful in the treatment of <i>KCNT1</i> epilepsies.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"14 11","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591899/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14111397","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The potassium sodium-activated channel subtype T member 1 (KCNT1) gene encodes the Slack channel KNa1.1, which is expressed in neurons throughout the brain. Gain-of-function variants in KCNT1 are associated with a spectrum of epilepsy syndromes, and mice carrying those variants exhibit a robust phenotype similar to that observed in patients. Kcnt1 knockout (KO) mice, however, have a normal lifespan without any epileptic phenotype. To understand the molecular differences between these two models, we conducted a comprehensive proteomic analysis of the cerebral cortices of Kcnt1 KO and Kcnt1R455H/+ mice, an animal model bearing a cytoplasmic C-terminal mutation homologous to a human R474H variant that results in EIMFS. The greatest change observed in Kcnt1 KO mice compared to the wild-type mice was the increased expression of multiple proteins of the inner mitochondrial membrane. Electron microscopy studies of cortical mitochondria from Kcnt1 KO mice further confirmed a significant increase in the density of mitochondrial cristae compared to that in wild-type mice. Kcnt1 reduction by a murine-specific Kcnt1 antisense oligonucleotide (ASO) in Kcnt1R455H/+ mice partially corrected the proteomic dysregulations in the disease model. The results support the hypothesis that ASO-mediated KCNT1 reduction could be therapeutically useful in the treatment of KCNT1 epilepsies.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.