CosGeneGate selects multi-functional and credible biomarkers for single-cell analysis.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Briefings in bioinformatics Pub Date : 2024-11-22 DOI:10.1093/bib/bbae626
Tianyu Liu, Wenxin Long, Zhiyuan Cao, Yuge Wang, Chuan Hua He, Le Zhang, Stephen M Strittmatter, Hongyu Zhao
{"title":"CosGeneGate selects multi-functional and credible biomarkers for single-cell analysis.","authors":"Tianyu Liu, Wenxin Long, Zhiyuan Cao, Yuge Wang, Chuan Hua He, Le Zhang, Stephen M Strittmatter, Hongyu Zhao","doi":"10.1093/bib/bbae626","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Selecting representative genes or marker genes to distinguish cell types is an important task in single-cell sequencing analysis. Although many methods have been proposed to select marker genes, the genes selected may have redundancy and/or do not show cell-type-specific expression patterns to distinguish cell types.</p><p><strong>Results: </strong>Here, we present a novel model, named CosGeneGate, to select marker genes for more effective marker selections. CosGeneGate is inspired by combining the advantages of selecting marker genes based on both cell-type classification accuracy and marker gene specific expression patterns. We demonstrate the better performance of the marker genes selected by CosGeneGate for various downstream analyses than the existing methods with both public datasets and newly sequenced datasets. The non-redundant marker genes identified by CosGeneGate for major cell types and tissues in human can be found at the website as follows: https://github.com/VivLon/CosGeneGate/blob/main/marker gene list.xlsx.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae626","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Selecting representative genes or marker genes to distinguish cell types is an important task in single-cell sequencing analysis. Although many methods have been proposed to select marker genes, the genes selected may have redundancy and/or do not show cell-type-specific expression patterns to distinguish cell types.

Results: Here, we present a novel model, named CosGeneGate, to select marker genes for more effective marker selections. CosGeneGate is inspired by combining the advantages of selecting marker genes based on both cell-type classification accuracy and marker gene specific expression patterns. We demonstrate the better performance of the marker genes selected by CosGeneGate for various downstream analyses than the existing methods with both public datasets and newly sequenced datasets. The non-redundant marker genes identified by CosGeneGate for major cell types and tissues in human can be found at the website as follows: https://github.com/VivLon/CosGeneGate/blob/main/marker gene list.xlsx.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CosGeneGate 可为单细胞分析选择多功能、可信的生物标记。
动机选择具有代表性的基因或标记基因来区分细胞类型是单细胞测序分析中的一项重要任务。虽然已经提出了很多选择标记基因的方法,但选择的基因可能存在冗余和/或没有显示细胞类型特异性表达模式以区分细胞类型:结果:在此,我们提出了一个名为 CosGeneGate 的新模型,用于选择标记基因,以实现更有效的标记选择。CosGeneGate 的灵感来自于结合基于细胞类型分类准确性和标记基因特异性表达模式选择标记基因的优势。我们利用公开数据集和新测序数据集证明,CosGeneGate 所选择的标记基因在各种下游分析中的表现优于现有方法。CosGeneGate 为人类主要细胞类型和组织鉴定的非冗余标记基因可在以下网站找到:https://github.com/VivLon/CosGeneGate/blob/main/marker gene list.xlsx。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
期刊最新文献
TRIAGE: an R package for regulatory gene analysis. AutoXAI4Omics: an automated explainable AI tool for omics and tabular data. MCGAE: unraveling tumor invasion through integrated multimodal spatial transcriptomics. tcrBLOSUM: an amino acid substitution matrix for sensitive alignment of distant epitope-specific TCRs. A versatile pipeline to identify convergently lost ancestral conserved fragments associated with convergent evolution of vocal learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1