{"title":"Deep-Eutectic-Solvent-Decorated Metal-Organic Framework for Food and Environmental Sample Preparation.","authors":"Wanlin Deng, Chen Fan, Ruixue Zhang, Ming Jin","doi":"10.3390/foods13223614","DOIUrl":null,"url":null,"abstract":"<p><p>Deep eutectic solvent (DES) is distinguished by its unique solvent properties, chemical stability, and eco-friendly nature, which are pivotal in a spectrum of chemical processes. It enhances the sample preparation process by increasing efficiency and minimizing the environmental impact. Metal-organic frameworks (MOFs), which are porous structures formed through coordination bonds between metal ions and organic ligands, are defined by their adjustable pore dimensions, extensive surface areas, and customizable architectures. The integration of DES within MOF to create DES@MOF capitalizes on the beneficial attributes of both materials, augmenting MOFs' stability and versatility while providing a multifunctional carrier for DES. This composite material is both highly stable and readily tunable, establishing it as a leading contender for applications in sample preparation for food and environmental samples. This comprehensive review explores the application of DES-decorated MOF in food and environmental sample preparation and highlights the expansive potential of DES@MOF in diverse fields. We provide a detailed analysis of the characteristics of DES@MOF and its individual components, methods for decorating MOFs with DES, the advantages of these composite materials in sample pretreatment, and their specific applications in food safety and environmental monitoring. DESs are employed to modify MOFs, offering a multitude of benefits that can substantially improve the overall performance and applicability of MOFs. The review also discusses current challenges and future directions in this field, offering valuable insights for further research and development. The synergistic effects of DES and MOFs offer new opportunities for applications in food safety and other areas, leading to the development of more efficient, sensitive, and environmentally friendly analytical methods. This collaboration paves the way for sustainable technologies and innovative solutions to complex challenges.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"13 22","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods13223614","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Deep eutectic solvent (DES) is distinguished by its unique solvent properties, chemical stability, and eco-friendly nature, which are pivotal in a spectrum of chemical processes. It enhances the sample preparation process by increasing efficiency and minimizing the environmental impact. Metal-organic frameworks (MOFs), which are porous structures formed through coordination bonds between metal ions and organic ligands, are defined by their adjustable pore dimensions, extensive surface areas, and customizable architectures. The integration of DES within MOF to create DES@MOF capitalizes on the beneficial attributes of both materials, augmenting MOFs' stability and versatility while providing a multifunctional carrier for DES. This composite material is both highly stable and readily tunable, establishing it as a leading contender for applications in sample preparation for food and environmental samples. This comprehensive review explores the application of DES-decorated MOF in food and environmental sample preparation and highlights the expansive potential of DES@MOF in diverse fields. We provide a detailed analysis of the characteristics of DES@MOF and its individual components, methods for decorating MOFs with DES, the advantages of these composite materials in sample pretreatment, and their specific applications in food safety and environmental monitoring. DESs are employed to modify MOFs, offering a multitude of benefits that can substantially improve the overall performance and applicability of MOFs. The review also discusses current challenges and future directions in this field, offering valuable insights for further research and development. The synergistic effects of DES and MOFs offer new opportunities for applications in food safety and other areas, leading to the development of more efficient, sensitive, and environmentally friendly analytical methods. This collaboration paves the way for sustainable technologies and innovative solutions to complex challenges.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds