Pavan Vaddady, Anaïs Glatard, Giovanni Smania, Shintaro Nakayama, Hiroyuki Inoue, Abhinav Kurumaddali, Malaz Abutarif, Ming Zheng
{"title":"Population pharmacokinetic analysis of quizartinib in patients with newly diagnosed FLT3-internal-tandem-duplication-positive acute myeloid leukemia","authors":"Pavan Vaddady, Anaïs Glatard, Giovanni Smania, Shintaro Nakayama, Hiroyuki Inoue, Abhinav Kurumaddali, Malaz Abutarif, Ming Zheng","doi":"10.1111/cts.70074","DOIUrl":null,"url":null,"abstract":"<p>The population pharmacokinetics (PK) of quizartinib and its pharmacologically active metabolite AC886 have been previously described in healthy volunteers (HV) and relapsed/refractory (R/R) FLT3-internal-tandem-duplication-positive (FLT3-IDT-positive) acute myeloid leukemia (AML) patients receiving quizartinib monotherapy. In this analysis, we characterized the population PK of quizartinib and AC886 in newly diagnosed FLT3-ITD-positive AML patients receiving standard induction and consolidation chemotherapy as background treatment, using data from the Phase 3 QuANTUM-First trial and 12 earlier studies. Quizartinib PK were best described by a three-compartment model with sequential zero- and first-order absorption and first-order elimination. A two-compartment model with first-order metabolite formation and first-order elimination best fitted AC886 data. The PK of both moieties showed large interindividual variability (approximately 70% coefficient of variation for systemic clearances). The use of strong cytochrome P450 3A (CYP3A) inhibitors had the largest impact on exposure, increasing the steady-state area under the curve during the dosing interval (AUC<sub>ss</sub>) by 1.8-fold. This is consistent with observations in HV and R/R AML patients and confirms the need for dose adjustments during coadministration. A novel finding in newly diagnosed AML patients was the phase-dependent change in steady-state quizartinib exposure: dose-normalized AUC<sub>ss</sub> values were 0.6-fold during induction, similar during consolidation, and 1.4-fold during continuation compared to R/R AML patients receiving quizartinib monotherapy. The present analysis highlighted the comparison of quizartinib and AC886 PK between newly diagnosed AML patients and previously studied populations, informed dose modifications needed with strong CYP3A inhibitors, and supported the use of derived individual exposure metrics in separate exposure-response analyses.</p>","PeriodicalId":50610,"journal":{"name":"Cts-Clinical and Translational Science","volume":"17 12","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cts.70074","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cts-Clinical and Translational Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cts.70074","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The population pharmacokinetics (PK) of quizartinib and its pharmacologically active metabolite AC886 have been previously described in healthy volunteers (HV) and relapsed/refractory (R/R) FLT3-internal-tandem-duplication-positive (FLT3-IDT-positive) acute myeloid leukemia (AML) patients receiving quizartinib monotherapy. In this analysis, we characterized the population PK of quizartinib and AC886 in newly diagnosed FLT3-ITD-positive AML patients receiving standard induction and consolidation chemotherapy as background treatment, using data from the Phase 3 QuANTUM-First trial and 12 earlier studies. Quizartinib PK were best described by a three-compartment model with sequential zero- and first-order absorption and first-order elimination. A two-compartment model with first-order metabolite formation and first-order elimination best fitted AC886 data. The PK of both moieties showed large interindividual variability (approximately 70% coefficient of variation for systemic clearances). The use of strong cytochrome P450 3A (CYP3A) inhibitors had the largest impact on exposure, increasing the steady-state area under the curve during the dosing interval (AUCss) by 1.8-fold. This is consistent with observations in HV and R/R AML patients and confirms the need for dose adjustments during coadministration. A novel finding in newly diagnosed AML patients was the phase-dependent change in steady-state quizartinib exposure: dose-normalized AUCss values were 0.6-fold during induction, similar during consolidation, and 1.4-fold during continuation compared to R/R AML patients receiving quizartinib monotherapy. The present analysis highlighted the comparison of quizartinib and AC886 PK between newly diagnosed AML patients and previously studied populations, informed dose modifications needed with strong CYP3A inhibitors, and supported the use of derived individual exposure metrics in separate exposure-response analyses.
期刊介绍:
Clinical and Translational Science (CTS), an official journal of the American Society for Clinical Pharmacology and Therapeutics, highlights original translational medicine research that helps bridge laboratory discoveries with the diagnosis and treatment of human disease. Translational medicine is a multi-faceted discipline with a focus on translational therapeutics. In a broad sense, translational medicine bridges across the discovery, development, regulation, and utilization spectrum. Research may appear as Full Articles, Brief Reports, Commentaries, Phase Forwards (clinical trials), Reviews, or Tutorials. CTS also includes invited didactic content that covers the connections between clinical pharmacology and translational medicine. Best-in-class methodologies and best practices are also welcomed as Tutorials. These additional features provide context for research articles and facilitate understanding for a wide array of individuals interested in clinical and translational science. CTS welcomes high quality, scientifically sound, original manuscripts focused on clinical pharmacology and translational science, including animal, in vitro, in silico, and clinical studies supporting the breadth of drug discovery, development, regulation and clinical use of both traditional drugs and innovative modalities.