Inhibition of Tacrolimus Metabolism by Cannabidiol and Its Metabolites In Vitro

IF 3.1 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Cts-Clinical and Translational Science Pub Date : 2025-02-07 DOI:10.1111/cts.70152
Gerald C. So, Jessica Bo Li Lu, Ying-Hua Cheng, Debora L. Gisch, Sachiko Koyama, Ricardo Melo Ferreira, Travis R. Beamon, Zeruesenay Desta, Michael T. Eadon
{"title":"Inhibition of Tacrolimus Metabolism by Cannabidiol and Its Metabolites In Vitro","authors":"Gerald C. So,&nbsp;Jessica Bo Li Lu,&nbsp;Ying-Hua Cheng,&nbsp;Debora L. Gisch,&nbsp;Sachiko Koyama,&nbsp;Ricardo Melo Ferreira,&nbsp;Travis R. Beamon,&nbsp;Zeruesenay Desta,&nbsp;Michael T. Eadon","doi":"10.1111/cts.70152","DOIUrl":null,"url":null,"abstract":"<p>Drug interactions are major causes of interindividual variability in tacrolimus exposure and effect. Tacrolimus, a widely used drug in transplant patients, is metabolized by CYP3A4 and CYP3A5. Cannabidiol (CBD) use after transplant is common. Clinical cases suggest CBD may alter tacrolimus exposure, but the mechanism of this interaction is unknown. We hypothesize that cannabidiol will inhibit tacrolimus metabolism in vitro mainly through CYP3A5 inhibition. In pooled human liver microsomes (HLMs) and recombinant (r) CYP3A4 and CYP3A5 enzymes, tacrolimus (1 μM) metabolism was determined using substrate depletion method in the absence (control) and the presence of 10 μM CBD, 7-hydroxyCBD, and 7-carboxyCBD. Ketoconazole (1 μM) served as a positive control for the inhibition of CYP3A. Linear regression analyses were performed to obtain kinetic parameters of the depletion. Tacrolimus depletion half-life was 2.54, 0.922, and 0.351 min with pooled HLMs, rCYP3A4, and rCYP3A5, respectively. In pooled HLMs, CBD and 7-hydroxyCBD increased tacrolimus half-life by 0.8- and 2.3-fold (both <i>p</i> &lt; 0.0001), respectively. In rCYP3A4, CBD, 7-hydroxyCBD, and ketoconazole prolonged tacrolimus half-life by 5.8-, 14-, and 7.7-fold, respectively. In rCYP3A5, CBD, 7-hydroxyCBD, and ketoconazole prolonged half-life by 29.3-, 19.7-, and 0.1-fold, respectively. In all experiments, 7-carboxyCBD had minimal effect on tacrolimus depletion. CBD and 7-hydroxyCBD inhibited tacrolimus metabolism in vitro. CBD showed stronger inhibition in rCYP3A5 than rCYP3A4. The demonstrated CYP3A5 selectivity of cannabidiol may contribute to the in vitro identification of CYP3A5 substrates in new drug development. Our results support the potential of a clinical drug–drug interaction between CBD and tacrolimus.</p>","PeriodicalId":50610,"journal":{"name":"Cts-Clinical and Translational Science","volume":"18 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cts.70152","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cts-Clinical and Translational Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cts.70152","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Drug interactions are major causes of interindividual variability in tacrolimus exposure and effect. Tacrolimus, a widely used drug in transplant patients, is metabolized by CYP3A4 and CYP3A5. Cannabidiol (CBD) use after transplant is common. Clinical cases suggest CBD may alter tacrolimus exposure, but the mechanism of this interaction is unknown. We hypothesize that cannabidiol will inhibit tacrolimus metabolism in vitro mainly through CYP3A5 inhibition. In pooled human liver microsomes (HLMs) and recombinant (r) CYP3A4 and CYP3A5 enzymes, tacrolimus (1 μM) metabolism was determined using substrate depletion method in the absence (control) and the presence of 10 μM CBD, 7-hydroxyCBD, and 7-carboxyCBD. Ketoconazole (1 μM) served as a positive control for the inhibition of CYP3A. Linear regression analyses were performed to obtain kinetic parameters of the depletion. Tacrolimus depletion half-life was 2.54, 0.922, and 0.351 min with pooled HLMs, rCYP3A4, and rCYP3A5, respectively. In pooled HLMs, CBD and 7-hydroxyCBD increased tacrolimus half-life by 0.8- and 2.3-fold (both p < 0.0001), respectively. In rCYP3A4, CBD, 7-hydroxyCBD, and ketoconazole prolonged tacrolimus half-life by 5.8-, 14-, and 7.7-fold, respectively. In rCYP3A5, CBD, 7-hydroxyCBD, and ketoconazole prolonged half-life by 29.3-, 19.7-, and 0.1-fold, respectively. In all experiments, 7-carboxyCBD had minimal effect on tacrolimus depletion. CBD and 7-hydroxyCBD inhibited tacrolimus metabolism in vitro. CBD showed stronger inhibition in rCYP3A5 than rCYP3A4. The demonstrated CYP3A5 selectivity of cannabidiol may contribute to the in vitro identification of CYP3A5 substrates in new drug development. Our results support the potential of a clinical drug–drug interaction between CBD and tacrolimus.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cts-Clinical and Translational Science
Cts-Clinical and Translational Science 医学-医学:研究与实验
CiteScore
6.70
自引率
2.60%
发文量
234
审稿时长
6-12 weeks
期刊介绍: Clinical and Translational Science (CTS), an official journal of the American Society for Clinical Pharmacology and Therapeutics, highlights original translational medicine research that helps bridge laboratory discoveries with the diagnosis and treatment of human disease. Translational medicine is a multi-faceted discipline with a focus on translational therapeutics. In a broad sense, translational medicine bridges across the discovery, development, regulation, and utilization spectrum. Research may appear as Full Articles, Brief Reports, Commentaries, Phase Forwards (clinical trials), Reviews, or Tutorials. CTS also includes invited didactic content that covers the connections between clinical pharmacology and translational medicine. Best-in-class methodologies and best practices are also welcomed as Tutorials. These additional features provide context for research articles and facilitate understanding for a wide array of individuals interested in clinical and translational science. CTS welcomes high quality, scientifically sound, original manuscripts focused on clinical pharmacology and translational science, including animal, in vitro, in silico, and clinical studies supporting the breadth of drug discovery, development, regulation and clinical use of both traditional drugs and innovative modalities.
期刊最新文献
Inhibition of Tacrolimus Metabolism by Cannabidiol and Its Metabolites In Vitro A Randomized Hybrid-Effectiveness Trial Comparing Pharmacogenomics (PGx) to Standard Care: The PGx Applied to Chronic Pain Treatment in Primary Care (PGx-ACT) Trial AI In Action: Redefining Drug Discovery and Development Pharmacogenetic Information on Drug Labels of the Italian Agency of Medicines (AIFA): Actionability and Comparison Across Other Regulatory Agencies Pharmacokinetics of a Novel Piperaquine Dispersible Granules Formulation Under Fasting and Various Fed Conditions Versus Piperaquine Tablets When Fasted in Healthy Tanzanian Adults: A Randomized, Phase I Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1