Sustainable remediation of nickel (II) in aqueous solutions using waste orange peel biomass as a bioadsorbent

IF 2.2 4区 化学 Q2 Engineering Chemical Papers Pub Date : 2024-10-12 DOI:10.1007/s11696-024-03726-6
Yasemin İşlek Coşkun, Rabia Nur Ün
{"title":"Sustainable remediation of nickel (II) in aqueous solutions using waste orange peel biomass as a bioadsorbent","authors":"Yasemin İşlek Coşkun,&nbsp;Rabia Nur Ün","doi":"10.1007/s11696-024-03726-6","DOIUrl":null,"url":null,"abstract":"<div><p>A low-cost adsorbent for Ni(II) uptake was developed using orange peel waste after pretreatment with ethanol/water at 40 °C for 6 h. Various experimental factors such as pH, adsorbent dosage, and contact time were investigated, with optimal conditions determined to be pH 5, an orange peel dose of 2.5 g/L, and a contact time of 90 min. The characterization of the adsorbent was analyzed. The linear and nonlinear isotherm and kinetic models were investigated. The Langmuir model suggested chemisorption with a 19.42 mg/g capacity, following pseudo-second-order kinetics. The thermodynamic analysis revealed that the uptake was exothermic (ΔH° &lt; 0), feasible, and spontaneous (ΔG° &lt; 0). Regeneration studies (NaCl, NaOH, HCl, HNO<sub>3</sub>), interference studies (Al<sup>3+</sup>, Cd<sup>2+</sup>, Ca<sup>2+</sup>, Na<sup>+</sup>, mixed solution), and application studies with real water samples (wastewater, drainage water, tap water, bottled water) were also conducted. A possible uptake mechanism was suggested. Utilizing ethanol/water-pretreated orange peels (EOP) addresses organic biomass waste disposal and offers a cost-effective, readily available solution for heavy metal removal.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":"78 17","pages":"9051 - 9067"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-024-03726-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

A low-cost adsorbent for Ni(II) uptake was developed using orange peel waste after pretreatment with ethanol/water at 40 °C for 6 h. Various experimental factors such as pH, adsorbent dosage, and contact time were investigated, with optimal conditions determined to be pH 5, an orange peel dose of 2.5 g/L, and a contact time of 90 min. The characterization of the adsorbent was analyzed. The linear and nonlinear isotherm and kinetic models were investigated. The Langmuir model suggested chemisorption with a 19.42 mg/g capacity, following pseudo-second-order kinetics. The thermodynamic analysis revealed that the uptake was exothermic (ΔH° < 0), feasible, and spontaneous (ΔG° < 0). Regeneration studies (NaCl, NaOH, HCl, HNO3), interference studies (Al3+, Cd2+, Ca2+, Na+, mixed solution), and application studies with real water samples (wastewater, drainage water, tap water, bottled water) were also conducted. A possible uptake mechanism was suggested. Utilizing ethanol/water-pretreated orange peels (EOP) addresses organic biomass waste disposal and offers a cost-effective, readily available solution for heavy metal removal.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用废橘皮生物质作为生物吸附剂对水溶液中的镍(II)进行可持续修复
研究了 pH 值、吸附剂用量和接触时间等多种实验因素,确定最佳条件为 pH 值为 5、橘皮用量为 2.5 g/L、接触时间为 90 分钟。分析了吸附剂的特性。研究了线性和非线性等温线和动力学模型。朗缪尔模型表明,化学吸附能力为 19.42 毫克/克,遵循假二阶动力学。热力学分析表明,吸收是放热(ΔH° <0)、可行和自发的(ΔG° <0)。此外,还进行了再生研究(NaCl、NaOH、HCl、HNO3)、干扰研究(Al3+、Cd2+、Ca2+、Na+、混合溶液)以及实际水样(废水、排水、自来水、瓶装水)的应用研究。研究提出了一种可能的吸收机制。利用乙醇/水处理过的橘子皮(EOP)可以解决有机生物质废物的处理问题,并为去除重金属提供了一种具有成本效益且随时可用的解决方案。 图表摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Papers
Chemical Papers Chemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍: Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.
期刊最新文献
Retraction Note: The effect of oxidation pretreatment of polymer template on the formation and catalytic activity of Au/PET membrane composites Correction: Anti-proliferative activity of dithiocarbamate salts: Synthesis and in vitro study Determination of glucose oxidase activity of flour additive by fluorescence quenching method Assessment of phenolic, flavonoid, total antioxidant, and anthocyanin contents of various colored hawthorn fruits for their potential as functional foods Correction: Investigation of the structural, electronic, magnetic, mechanical, and optical properties of calcium-based CaJO3 (J = Mn, Ru) perovskites: A first-principle computations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1