Economic and demonstrative pilot-scale harvesting of microalgae biomass via novel combined process of dissolved air flotation and screw-press filtration.
Hyo Jik Yoon, Jeong Seop Lee, Ki Ha Min, Dong Hyun Kim, Sang Jun Sim, Seung Pil Pack
{"title":"Economic and demonstrative pilot-scale harvesting of microalgae biomass via novel combined process of dissolved air flotation and screw-press filtration.","authors":"Hyo Jik Yoon, Jeong Seop Lee, Ki Ha Min, Dong Hyun Kim, Sang Jun Sim, Seung Pil Pack","doi":"10.1016/j.biortech.2024.131892","DOIUrl":null,"url":null,"abstract":"<p><p>Microalgae, a promising sustainable biomass resource, lacks sufficient research for pilot-scale processes despite available technologies. Harvesting methods also pose challenges for large-scale applications. To address this, the economically viable large-scale microalgae harvesting system is here presented. The design integrates dissolved air flotation (5 m<sup>3</sup>/h) and screw-press filtration (10 kg/h), minimizing energy consumption suitable for industrial processes. This system efficiently harvests chlorella sp. (up to 4.1 m<sup>3</sup>) with a biomass harvest efficiency of 93 % and a dewatering rate of 11.9 %. Compared to centrifugation, the multi-stage system improves energy efficiency by 60.5 % with 1.7 kWh/m<sup>3</sup> of energy consumption. This innovative approach demonstrates the potential for large-scale microalgae biomass harvesting.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131892"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131892","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Microalgae, a promising sustainable biomass resource, lacks sufficient research for pilot-scale processes despite available technologies. Harvesting methods also pose challenges for large-scale applications. To address this, the economically viable large-scale microalgae harvesting system is here presented. The design integrates dissolved air flotation (5 m3/h) and screw-press filtration (10 kg/h), minimizing energy consumption suitable for industrial processes. This system efficiently harvests chlorella sp. (up to 4.1 m3) with a biomass harvest efficiency of 93 % and a dewatering rate of 11.9 %. Compared to centrifugation, the multi-stage system improves energy efficiency by 60.5 % with 1.7 kWh/m3 of energy consumption. This innovative approach demonstrates the potential for large-scale microalgae biomass harvesting.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.