{"title":"Optimizing stent retrievers for mechanical enhancement and in vitro testing in acute ischemic stroke models.","authors":"Jae-Won Lee, Han-Ki Kim, JinWoo Kim, Hyuk Choi","doi":"10.1186/s12938-024-01312-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute ischemic stroke (AIS) remains a major cause of morbidity and mortality worldwide. Mechanical thrombectomy, especially with stent retrievers, offers a promising treatment, particularly for patients ineligible for intravenous tissue plasminogen activator (IV tPA) therapy. This study aimed to develop and evaluate novel stent retriever designs to enhance mechanical properties and vessel compatibility.</p><p><strong>Results: </strong>We evaluated four stent designs using finite-element analysis (FEA) to assess their mechanical properties. Based on these evaluations, Stent D emerged as the optimal design due to its superior elasticity and adaptability. Comparative testing of Stent D against commercial stents, Solitaire FR and Trevo XP ProVue, revealed the following metrics: radial forces of 3.77 ± 0.01 N for Solitaire FR, 3.92 ± 0.08 N for Trevo XP ProVue, and 4.10 ± 0.07 N for Stent D; flexibility measurements of 0.38 ± 0.11 N for Solitaire FR, 0.91 ± 0.11 N for Trevo XP ProVue, and 0.59 ± 0.05 N for Stent D; deployment forces of 0.37 ± 0.02 N for Solitaire FR, 0.42 ± 0.04 N for Trevo XP ProVue, and 0.32 ± 0.02 N for Stent D; and recapture forces of 0.38 ± 0.01 N for Solitaire FR, 0.45 ± 0.02 N for Trevo XP ProVue, and 0.35 ± 0.01 N for Stent D. Thrombus retrieval rates were 96.16% for Solitaire FR and 95.51% for Stent D.</p><p><strong>Conclusions: </strong>These findings demonstrate that Stent D performs comparably to commercial stents, highlighting its effective performance in AIS treatment. Stent D shows promise as a candidate for further clinical evaluation due to its superior mechanical properties and effective thrombus retrieval capabilities.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"23 1","pages":"121"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-024-01312-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Acute ischemic stroke (AIS) remains a major cause of morbidity and mortality worldwide. Mechanical thrombectomy, especially with stent retrievers, offers a promising treatment, particularly for patients ineligible for intravenous tissue plasminogen activator (IV tPA) therapy. This study aimed to develop and evaluate novel stent retriever designs to enhance mechanical properties and vessel compatibility.
Results: We evaluated four stent designs using finite-element analysis (FEA) to assess their mechanical properties. Based on these evaluations, Stent D emerged as the optimal design due to its superior elasticity and adaptability. Comparative testing of Stent D against commercial stents, Solitaire FR and Trevo XP ProVue, revealed the following metrics: radial forces of 3.77 ± 0.01 N for Solitaire FR, 3.92 ± 0.08 N for Trevo XP ProVue, and 4.10 ± 0.07 N for Stent D; flexibility measurements of 0.38 ± 0.11 N for Solitaire FR, 0.91 ± 0.11 N for Trevo XP ProVue, and 0.59 ± 0.05 N for Stent D; deployment forces of 0.37 ± 0.02 N for Solitaire FR, 0.42 ± 0.04 N for Trevo XP ProVue, and 0.32 ± 0.02 N for Stent D; and recapture forces of 0.38 ± 0.01 N for Solitaire FR, 0.45 ± 0.02 N for Trevo XP ProVue, and 0.35 ± 0.01 N for Stent D. Thrombus retrieval rates were 96.16% for Solitaire FR and 95.51% for Stent D.
Conclusions: These findings demonstrate that Stent D performs comparably to commercial stents, highlighting its effective performance in AIS treatment. Stent D shows promise as a candidate for further clinical evaluation due to its superior mechanical properties and effective thrombus retrieval capabilities.
期刊介绍:
BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering.
BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to:
Bioinformatics-
Bioinstrumentation-
Biomechanics-
Biomedical Devices & Instrumentation-
Biomedical Signal Processing-
Healthcare Information Systems-
Human Dynamics-
Neural Engineering-
Rehabilitation Engineering-
Biomaterials-
Biomedical Imaging & Image Processing-
BioMEMS and On-Chip Devices-
Bio-Micro/Nano Technologies-
Biomolecular Engineering-
Biosensors-
Cardiovascular Systems Engineering-
Cellular Engineering-
Clinical Engineering-
Computational Biology-
Drug Delivery Technologies-
Modeling Methodologies-
Nanomaterials and Nanotechnology in Biomedicine-
Respiratory Systems Engineering-
Robotics in Medicine-
Systems and Synthetic Biology-
Systems Biology-
Telemedicine/Smartphone Applications in Medicine-
Therapeutic Systems, Devices and Technologies-
Tissue Engineering