Biased movement of monomeric kinesin-3 KLP-6 explained by a symmetric Brownian ratchet model.

IF 3.2 3区 生物学 Q2 BIOPHYSICS Biophysical journal Pub Date : 2024-11-26 DOI:10.1016/j.bpj.2024.11.3312
Tomoki Kita, Kazuo Sasaki, Shinsuke Niwa
{"title":"Biased movement of monomeric kinesin-3 KLP-6 explained by a symmetric Brownian ratchet model.","authors":"Tomoki Kita, Kazuo Sasaki, Shinsuke Niwa","doi":"10.1016/j.bpj.2024.11.3312","DOIUrl":null,"url":null,"abstract":"<p><p>Most kinesin molecular motors dimerize to move processively and efficiently along microtubules; however, some can maintain processivity even in a monomeric state. Previous studies have suggested that asymmetric potentials between the motor domain and microtubules underlie this motility. In this study, we demonstrate that the kinesin-3 family motor protein KLP-6 can move forward along microtubules as a monomer upon release of autoinhibition. This motility can be explained by a change in length between the head and tail, rather than by asymmetric potentials. Using mass photometry and single-molecule assays, we confirmed that activated full-length KLP-6 is monomeric both in solution and on microtubules. KLP-6 possesses a microtubule-binding tail domain, and its motor domain does not exhibit biased movement, indicating that the tail domain is crucial for the processive movement of monomeric KLP-6. We developed a mathematical model to explain the biased Brownian movements of monomeric KLP-6. Our model concludes that a slight conformational change driven by neck-linker docking in the motor domain enables the monomeric kinesin to move forward if a second microtubule-binding domain exists.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.11.3312","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Most kinesin molecular motors dimerize to move processively and efficiently along microtubules; however, some can maintain processivity even in a monomeric state. Previous studies have suggested that asymmetric potentials between the motor domain and microtubules underlie this motility. In this study, we demonstrate that the kinesin-3 family motor protein KLP-6 can move forward along microtubules as a monomer upon release of autoinhibition. This motility can be explained by a change in length between the head and tail, rather than by asymmetric potentials. Using mass photometry and single-molecule assays, we confirmed that activated full-length KLP-6 is monomeric both in solution and on microtubules. KLP-6 possesses a microtubule-binding tail domain, and its motor domain does not exhibit biased movement, indicating that the tail domain is crucial for the processive movement of monomeric KLP-6. We developed a mathematical model to explain the biased Brownian movements of monomeric KLP-6. Our model concludes that a slight conformational change driven by neck-linker docking in the motor domain enables the monomeric kinesin to move forward if a second microtubule-binding domain exists.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用对称布朗棘轮模型解释单体驱动蛋白-3 KLP-6 的偏向运动
大多数驱动蛋白分子马达都是二聚体,可以沿着微管高效地运动;然而,有些驱动蛋白分子马达即使在单体状态下也能保持运动能力。先前的研究表明,马达结构域与微管之间的不对称电位是这种运动性的基础。在本研究中,我们证明了驱动蛋白-3 家族的运动蛋白 KLP-6 在释放自身抑制后可以作为单体沿着微管向前运动。这种运动性可以用头部和尾部之间的长度变化而不是不对称电位来解释。利用质量光度法和单分子测定法,我们证实活化的全长 KLP-6 在溶液中和微管上都是单体。KLP-6 有一个与微管结合的尾部结构域,而其运动结构域并不表现出偏向运动,这表明尾部结构域对于单体 KLP-6 的过程性运动至关重要。我们建立了一个数学模型来解释单体 KLP-6 的偏布朗运动。我们的模型得出结论:如果存在第二个微管结合结构域,则马达结构域中的颈部连接体对接所驱动的轻微构象变化可使单体驱动蛋白向前运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
期刊最新文献
EB3-informed dynamics of the microtubule stabilizing cap during stalled growth. Effects of molecular interaction and liver sinusoidal mechanical properties on leukocyte adhesions. Bayesian Estimation of Muscle Mechanisms and Therapeutic Targets Using Variational Autoencoders. Biased movement of monomeric kinesin-3 KLP-6 explained by a symmetric Brownian ratchet model. Blink nadir measurements of sarcoplasmic reticulum are consistent with strong local Ca2+ depletion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1