Revealing an origin of temperature-dependent structural change in intrinsically disordered proteins.

IF 3.2 3区 生物学 Q2 BIOPHYSICS Biophysical journal Pub Date : 2024-12-24 DOI:10.1016/j.bpj.2024.12.022
Rintaro Inoue, Takashi Oda, Hiroshi Nakagawa, Taiki Tominaga, Takahisa Ikegami, Tsuyoshi Konuma, Hiroki Iwase, Yukinobu Kawakita, Mamoru Sato, Masaaki Sugiyama
{"title":"Revealing an origin of temperature-dependent structural change in intrinsically disordered proteins.","authors":"Rintaro Inoue, Takashi Oda, Hiroshi Nakagawa, Taiki Tominaga, Takahisa Ikegami, Tsuyoshi Konuma, Hiroki Iwase, Yukinobu Kawakita, Mamoru Sato, Masaaki Sugiyama","doi":"10.1016/j.bpj.2024.12.022","DOIUrl":null,"url":null,"abstract":"<p><p>Intrinsically disordered proteins (IDPs) show structural changes stimulated by changes in external conditions. This study aims to reveal the temperature dependence of the structure and the dynamics of the intrinsically disordered region of the helicase-associated endonuclease for fork-structured DNA, one of the typical IDPs, using an integrative approach. Small-angle X-ray scattering (SAXS) and circular dichroism (CD) studies revealed that the radius of gyration and ellipticity at 222 nm remained constant up to 313-323 K, followed by a decline above this temperature range. NMR studies revealed the absence of a promotion of the α helix. As a result, SAXS, CD, and NMR data strongly suggest that these temperature-dependent structural changes were primarily due to a reduction in the content of the polyproline II (PPII) helix. Moreover, quasielastic neutron scattering studies revealed a slight change in the activation energy in a similar temperature range. Considering the concept of glass transition, it is posited that dynamical cooperativity between the PPII helix and water may play a significant role in these structural changes. The findings suggest that internal dynamics are crucial for regulating the structure of IDPs, highlighting the importance of considering dynamical cooperativity in future studies of protein behavior under varying temperature conditions.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.12.022","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Intrinsically disordered proteins (IDPs) show structural changes stimulated by changes in external conditions. This study aims to reveal the temperature dependence of the structure and the dynamics of the intrinsically disordered region of the helicase-associated endonuclease for fork-structured DNA, one of the typical IDPs, using an integrative approach. Small-angle X-ray scattering (SAXS) and circular dichroism (CD) studies revealed that the radius of gyration and ellipticity at 222 nm remained constant up to 313-323 K, followed by a decline above this temperature range. NMR studies revealed the absence of a promotion of the α helix. As a result, SAXS, CD, and NMR data strongly suggest that these temperature-dependent structural changes were primarily due to a reduction in the content of the polyproline II (PPII) helix. Moreover, quasielastic neutron scattering studies revealed a slight change in the activation energy in a similar temperature range. Considering the concept of glass transition, it is posited that dynamical cooperativity between the PPII helix and water may play a significant role in these structural changes. The findings suggest that internal dynamics are crucial for regulating the structure of IDPs, highlighting the importance of considering dynamical cooperativity in future studies of protein behavior under varying temperature conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示了内在无序蛋白质中温度依赖性结构变化的起源。
内在无序蛋白(IDPs)在外部条件变化的刺激下表现出结构变化。本研究旨在利用综合方法揭示典型IDPs之一Hef的内在无序区结构和动力学的温度依赖性。小角x射线散射(SAXS)和圆二色性(CD)研究表明,在222 nm处,旋转半径和椭圆率在313 ~ 323 K范围内保持恒定,在此温度范围以上,旋转半径和椭圆率下降。核磁共振(NMR)研究发现α-螺旋没有促进作用。因此,SAXS, CD和NMR数据强烈表明,这些温度依赖性结构变化主要是由于聚脯氨酸II (PPII)螺旋含量的减少。此外,准弹性中子散射研究表明,在相似的温度范围内,活化能略有变化。考虑到玻璃化转变的概念,假设PPII螺旋和水之间的动态协同作用可能在这些结构变化中起重要作用。研究结果表明,内部动力学对于调节IDPs的结构至关重要,强调了在未来研究不同温度条件下蛋白质行为时考虑动态协同性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
期刊最新文献
Physical effects of crowdant size and concentration on collective microtubule polymerization. Transformer Graph Variational Autoencoder for Generative Molecular Design. Competing addition processes give distinct growth regimes in the assembly of 1D filaments. Synaptic cleft geometry modulates NMDAR opening probability by tuning neurotransmitter residence time. Adhesion-driven vesicle translocation through membrane-covered pores.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1