Trade-off movement between hydraulic resistance escape and shear stress escape by cancer cells.

IF 3.2 3区 生物学 Q2 BIOPHYSICS Biophysical journal Pub Date : 2025-02-04 Epub Date: 2024-12-21 DOI:10.1016/j.bpj.2024.12.021
Jialin Shi, Yiteng Jin, Shujing Wang, Chunxiong Luo
{"title":"Trade-off movement between hydraulic resistance escape and shear stress escape by cancer cells.","authors":"Jialin Shi, Yiteng Jin, Shujing Wang, Chunxiong Luo","doi":"10.1016/j.bpj.2024.12.021","DOIUrl":null,"url":null,"abstract":"<p><p>In the circulatory system, the microenvironment surrounding cancer cells is complex and involves multiple coupled factors. We selected two core physical factors, shear stress and hydraulic resistance, and constructed a microfluidic device with dual negative inputs to study the trade-off movement behavior of cancer cells when facing coupled factors. We detected significant shear stress escape phenomena in the MDA-MB-231 cell line and qualitatively explained this behavior using a cellular force model. Through the dual validation of substrate anti-cell-adhesion modification and employment of the MCF-7 cell line, we further substantiated the predictability and feasibility of our model. This study provides an explanation for the trade-off underlying the direction-choosing mechanism of cancer cells when facing environmental selection.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":"528-539"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.12.021","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the circulatory system, the microenvironment surrounding cancer cells is complex and involves multiple coupled factors. We selected two core physical factors, shear stress and hydraulic resistance, and constructed a microfluidic device with dual negative inputs to study the trade-off movement behavior of cancer cells when facing coupled factors. We detected significant shear stress escape phenomena in the MDA-MB-231 cell line and qualitatively explained this behavior using a cellular force model. Through the dual validation of substrate anti-cell-adhesion modification and employment of the MCF-7 cell line, we further substantiated the predictability and feasibility of our model. This study provides an explanation for the trade-off underlying the direction-choosing mechanism of cancer cells when facing environmental selection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
癌细胞在液压阻力逃逸和剪切应力逃逸之间的权衡运动。
在循环系统中,癌细胞周围的微环境是复杂的,涉及多个耦合因素。我们选择剪应力和水力阻力两个核心物理因素,构建双负输入的微流控装置,研究癌细胞在面对耦合因素时的权衡运动行为。我们在MDA-MB-231细胞系中发现了明显的剪切应力逃逸现象,并使用细胞力模型定性地解释了这种行为。通过底物抗细胞粘附修饰和MCF-7细胞系的双重验证,我们进一步证实了我们模型的可预测性和可行性。本研究为癌细胞在面临环境选择时方向选择机制的权衡提供了解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
期刊最新文献
Effects of molecular interaction and liver sinusoidal mechanical properties on leukocyte adhesions. Metabolically intact nuclei are fluidized by the activity of the chromatin remodeling motor BRG1. Diet therapy abates mutant APC and KRas effects by reshaping plasma membrane cholesterol nanodomains. Revealing an origin of temperature-dependent structural change in intrinsically disordered proteins. Trade-off movement between hydraulic resistance escape and shear stress escape by cancer cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1