FunlncModel: integrating multi-omic features from upstream and downstream regulatory networks into a machine learning framework to identify functional lncRNAs.
{"title":"FunlncModel: integrating multi-omic features from upstream and downstream regulatory networks into a machine learning framework to identify functional lncRNAs.","authors":"Yan-Yu Li, Feng-Cui Qian, Guo-Rui Zhang, Xue-Cang Li, Li-Wei Zhou, Zheng-Min Yu, Wei Liu, Qiu-Yu Wang, Chun-Quan Li","doi":"10.1093/bib/bbae623","DOIUrl":null,"url":null,"abstract":"<p><p>Accumulating evidence indicates that long noncoding RNAs (lncRNAs) play important roles in molecular and cellular biology. Although many algorithms have been developed to reveal their associations with complex diseases by using downstream targets, the upstream (epi)genetic regulatory information has not been sufficiently leveraged to predict the function of lncRNAs in various biological processes. Therefore, we present FunlncModel, a machine learning-based interpretable computational framework, which aims to screen out functional lncRNAs by integrating a large number of (epi)genetic features and functional genomic features from their upstream/downstream multi-omic regulatory networks. We adopted the random forest method to mine nearly 60 features in three categories from >2000 datasets across 11 data types, including transcription factors (TFs), histone modifications, typical enhancers, super-enhancers, methylation sites, and mRNAs. FunlncModel outperformed alternative methods for classification performance in human embryonic stem cell (hESC) (0.95 Area Under Curve (AUROC) and 0.97 Area Under the Precision-Recall Curve (AUPRC)). It could not only infer the most known lncRNAs that influence the states of stem cells, but also discover novel high-confidence functional lncRNAs. We extensively validated FunlncModel's efficacy by up to 27 cancer-related functional prediction tasks, which involved multiple cancer cell growth processes and cancer hallmarks. Meanwhile, we have also found that (epi)genetic regulatory features, such as TFs and histone modifications, serve as strong predictors for revealing the function of lncRNAs. Overall, FunlncModel is a strong and stable prediction model for identifying functional lncRNAs in specific cellular contexts. FunlncModel is available as a web server at https://bio.liclab.net/FunlncModel/.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601888/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae623","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Accumulating evidence indicates that long noncoding RNAs (lncRNAs) play important roles in molecular and cellular biology. Although many algorithms have been developed to reveal their associations with complex diseases by using downstream targets, the upstream (epi)genetic regulatory information has not been sufficiently leveraged to predict the function of lncRNAs in various biological processes. Therefore, we present FunlncModel, a machine learning-based interpretable computational framework, which aims to screen out functional lncRNAs by integrating a large number of (epi)genetic features and functional genomic features from their upstream/downstream multi-omic regulatory networks. We adopted the random forest method to mine nearly 60 features in three categories from >2000 datasets across 11 data types, including transcription factors (TFs), histone modifications, typical enhancers, super-enhancers, methylation sites, and mRNAs. FunlncModel outperformed alternative methods for classification performance in human embryonic stem cell (hESC) (0.95 Area Under Curve (AUROC) and 0.97 Area Under the Precision-Recall Curve (AUPRC)). It could not only infer the most known lncRNAs that influence the states of stem cells, but also discover novel high-confidence functional lncRNAs. We extensively validated FunlncModel's efficacy by up to 27 cancer-related functional prediction tasks, which involved multiple cancer cell growth processes and cancer hallmarks. Meanwhile, we have also found that (epi)genetic regulatory features, such as TFs and histone modifications, serve as strong predictors for revealing the function of lncRNAs. Overall, FunlncModel is a strong and stable prediction model for identifying functional lncRNAs in specific cellular contexts. FunlncModel is available as a web server at https://bio.liclab.net/FunlncModel/.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.