Kathryn R Bowles, Chiara Pedicone, Derian A Pugh, Laura-Maria Oja, Filipa H Sousa, Lois K Keavey, Brian Fulton-Howard, Sarah A Weitzman, Yiyuan Liu, Jonathan L Chen, Matthew D Disney, Alison M Goate
{"title":"Development of MAPT S305 mutation human iPSC lines exhibiting elevated 4R tau expression and functional alterations in neurons and astrocytes.","authors":"Kathryn R Bowles, Chiara Pedicone, Derian A Pugh, Laura-Maria Oja, Filipa H Sousa, Lois K Keavey, Brian Fulton-Howard, Sarah A Weitzman, Yiyuan Liu, Jonathan L Chen, Matthew D Disney, Alison M Goate","doi":"10.1016/j.celrep.2024.115013","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the importance of 4R tau (with four microtubule-binding-repeat domains) in the pathogenicity of primary tauopathies, it has been challenging to model these diseases in induced pluripotent stem cell (iPSC)-derived neurons, which express very low levels of 4R tau. To address this, we have developed a panel of isogenic iPSC lines carrying MAPT splice-site mutations, S305S, S305I, or S305N, derived from four different donors. All mutations significantly increase 4R tau expression in iPSC neurons and astrocytes. Functional analyses of S305 mutant neurons reveal shared disruption in synaptic signaling and maturity but divergent effects on mitochondrial bioenergetics. In iPSC astrocytes, S305 mutations promote internalization of exogenous tau that may be a precursor to glial pathology. These lines recapitulate previously characterized tauopathy-relevant phenotypes and highlight functional differences between the wild-type 4R and the mutant 4R proteins in both neurons and astrocytes. As such, these lines enable a more complete understanding of pathogenic mechanisms underlying 4R tauopathies across different cell types.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 12","pages":"115013"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.115013","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the importance of 4R tau (with four microtubule-binding-repeat domains) in the pathogenicity of primary tauopathies, it has been challenging to model these diseases in induced pluripotent stem cell (iPSC)-derived neurons, which express very low levels of 4R tau. To address this, we have developed a panel of isogenic iPSC lines carrying MAPT splice-site mutations, S305S, S305I, or S305N, derived from four different donors. All mutations significantly increase 4R tau expression in iPSC neurons and astrocytes. Functional analyses of S305 mutant neurons reveal shared disruption in synaptic signaling and maturity but divergent effects on mitochondrial bioenergetics. In iPSC astrocytes, S305 mutations promote internalization of exogenous tau that may be a precursor to glial pathology. These lines recapitulate previously characterized tauopathy-relevant phenotypes and highlight functional differences between the wild-type 4R and the mutant 4R proteins in both neurons and astrocytes. As such, these lines enable a more complete understanding of pathogenic mechanisms underlying 4R tauopathies across different cell types.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.