Wei Guo, Jie J Zhang, Jonathan P Newman, Matthew A Wilson
{"title":"Latent learning drives sleep-dependent plasticity in distinct CA1 subpopulations.","authors":"Wei Guo, Jie J Zhang, Jonathan P Newman, Matthew A Wilson","doi":"10.1016/j.celrep.2024.115028","DOIUrl":null,"url":null,"abstract":"<p><p>Latent learning is a process that enables the brain to transform experiences into \"cognitive maps,\" a form of implicit memory, without requiring reinforced training. To investigate its neural mechanisms, we record from hippocampal neurons in mice during latent learning of spatial maps and observe that the high-dimensional neural state space gradually transforms into a low-dimensional manifold that closely resembles the physical environment. This transformation process is associated with the neural reactivation of navigational experiences during sleep. Additionally, we identify a subset of hippocampal neurons that, rather than forming place fields in a novel environment, maintain weak spatial tuning but gradually develop correlated activity with other neurons. The elevated correlation introduces redundancy into the ensemble code, transforming the neural state space into a low-dimensional manifold that effectively links discrete place fields of place cells into a map-like structure. These results suggest a potential mechanism for latent learning of spatial maps in the hippocampus.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 12","pages":"115028"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.115028","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Latent learning is a process that enables the brain to transform experiences into "cognitive maps," a form of implicit memory, without requiring reinforced training. To investigate its neural mechanisms, we record from hippocampal neurons in mice during latent learning of spatial maps and observe that the high-dimensional neural state space gradually transforms into a low-dimensional manifold that closely resembles the physical environment. This transformation process is associated with the neural reactivation of navigational experiences during sleep. Additionally, we identify a subset of hippocampal neurons that, rather than forming place fields in a novel environment, maintain weak spatial tuning but gradually develop correlated activity with other neurons. The elevated correlation introduces redundancy into the ensemble code, transforming the neural state space into a low-dimensional manifold that effectively links discrete place fields of place cells into a map-like structure. These results suggest a potential mechanism for latent learning of spatial maps in the hippocampus.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.