Deposition of VS2/MoS2 bilayer layers of 2D material on nickel inverse opal structural substrates by SILAR and ECD processes as supercapacitor electrodes.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2024-11-27 DOI:10.1088/1361-6528/ad97c3
Sheng-Kuei Chiu, Li-Ting Hong, Rong-Fuh Louh
{"title":"Deposition of VS2/MoS2 bilayer layers of 2D material on nickel inverse opal structural substrates by SILAR and ECD processes as supercapacitor electrodes.","authors":"Sheng-Kuei Chiu, Li-Ting Hong, Rong-Fuh Louh","doi":"10.1088/1361-6528/ad97c3","DOIUrl":null,"url":null,"abstract":"<p><p>The composition, microstructure, and electrochemical properties of the two kinds of thin film electrode materials, namely VS2/MoS2/Ni-IOS and VS2/MoS2/ Ni-foam, were analyzed. The research results indicate that the self-assembled photonic crystal templates with adjusted EPSA processing parameters (100 V/cm; 7 min) would lead to an FCC closest-packed structure. Metallic nickel inverse opal structure (IOS) photonic crystals whose thickness can be freely regulated simply by electrochemical deposition time. VS2 and MoS2 are 2D materials with excellent electrochemical properties. We employed them as the electroactive material in this study and deposited them onto Ni-IOS surfaces to form a composite of VS2/MoS2/Ni-IOS electrode materials. The specimens exhibited an excellent specific capacitance (2,180 F/g) at a charge-discharge current density of 5 A/g. After the 2,000 cycles during the life test, the sample can still retain the original specific capacitance value by 72.3%. The inverse opal structure photonic crystal substrate produced in this work is designed as VS2/MoS2/Ni-IOS supercapacitor electrode materials, which can offer a significant technical contribution to the application of 2-D materials in high-performance supercapacitors currently.&#xD.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad97c3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The composition, microstructure, and electrochemical properties of the two kinds of thin film electrode materials, namely VS2/MoS2/Ni-IOS and VS2/MoS2/ Ni-foam, were analyzed. The research results indicate that the self-assembled photonic crystal templates with adjusted EPSA processing parameters (100 V/cm; 7 min) would lead to an FCC closest-packed structure. Metallic nickel inverse opal structure (IOS) photonic crystals whose thickness can be freely regulated simply by electrochemical deposition time. VS2 and MoS2 are 2D materials with excellent electrochemical properties. We employed them as the electroactive material in this study and deposited them onto Ni-IOS surfaces to form a composite of VS2/MoS2/Ni-IOS electrode materials. The specimens exhibited an excellent specific capacitance (2,180 F/g) at a charge-discharge current density of 5 A/g. After the 2,000 cycles during the life test, the sample can still retain the original specific capacitance value by 72.3%. The inverse opal structure photonic crystal substrate produced in this work is designed as VS2/MoS2/Ni-IOS supercapacitor electrode materials, which can offer a significant technical contribution to the application of 2-D materials in high-performance supercapacitors currently. .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 SILAR 和 ECD 工艺在镍反蛋白石结构基底上沉积二维材料 VS2/MoS2 双层,作为超级电容器电极。
研究分析了 VS2/MoS2/Ni-IOS 和 VS2/MoS2/Ni-foam 两种薄膜电极材料的组成、微观结构和电化学性能。研究结果表明,调整 EPSA 处理参数(100 V/cm;7 分钟)后的自组装光子晶体模板将形成 FCC 最密堆积结构。金属镍反蛋白石结构(IOS)光子晶体的厚度可通过电化学沉积时间自由调节。VS2 和 MoS2 是具有优异电化学特性的二维材料。本研究采用它们作为电活性材料,并将其沉积到 Ni-IOS 表面,形成 VS2/MoS2/Ni-IOS 复合电极材料。在充放电电流密度为 5 A/g 的条件下,试样表现出优异的比电容(2,180 F/g)。在经过 2,000 次循环寿命测试后,样品仍能保持 72.3% 的原始比电容值。本研究制备的反蛋白石结构光子晶体衬底被设计为VS2/MoS2/Ni-IOS超级电容器电极材料,为目前二维材料在高性能超级电容器中的应用做出了重要的技术贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
Friction-enhanced formation of Cu microwire on Si wafer. Quantum dots synthesis within ternary III-V nanowire towards light emitters in quantum photonic circuits: a review. Mapping nanoparticle formation and substrate heating effects: a fluence-resolved approach to pulsed laser-induced dewetting. Understanding the competing growth of 2D and 3D transition metal dichalcogenides in a chemical vapor deposition (CVD) reactor. Thermal expansion of boron nitride nanotubes and additively manufactured ceramic nanocomposites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1