Uncovering causal gene-tissue pairs and variants: A multivariable TWAS method controlling for infinitesimal effects.

Yihe Yang, Noah Lorincz-Comi, Xiaofeng Zhu
{"title":"Uncovering causal gene-tissue pairs and variants: A multivariable TWAS method controlling for infinitesimal effects.","authors":"Yihe Yang, Noah Lorincz-Comi, Xiaofeng Zhu","doi":"10.1101/2024.11.13.24317250","DOIUrl":null,"url":null,"abstract":"<p><p>Transcriptome-wide association studies (TWAS) are commonly used to prioritize causal genes underlying associations found in genome-wide association studies (GWAS) and have been extended to identify causal genes through multivariable TWAS methods. However, recent studies have shown that widespread infinitesimal effects due to polygenicity can impair the performance of these methods. In this report, we introduce a multivariable TWAS method named Tissue-Gene pairs, direct causal Variants, and Infinitesimal effects selector (TGVIS) to identify tissue-specific causal genes and direct causal variants while accounting for infinitesimal effects. In simulations, TGVIS maintains an accurate prioritization of causal gene-tissue pairs and variants and demonstrates comparable or superior power to existing approaches, regardless of the presence of infinitesimal effects. In the real data analysis of GWAS summary data of 45 cardiometabolic traits and expression/splicing quantitative trait loci (eQTL/sQTL) from 31 tissues, TGVIS is able to improve causal gene prioritization and identifies novel genes that were missed by conventional TWAS.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601775/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.11.13.24317250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transcriptome-wide association studies (TWAS) are commonly used to prioritize causal genes underlying associations found in genome-wide association studies (GWAS) and have been extended to identify causal genes through multivariable TWAS methods. However, recent studies have shown that widespread infinitesimal effects due to polygenicity can impair the performance of these methods. In this report, we introduce a multivariable TWAS method named Tissue-Gene pairs, direct causal Variants, and Infinitesimal effects selector (TGVIS) to identify tissue-specific causal genes and direct causal variants while accounting for infinitesimal effects. In simulations, TGVIS maintains an accurate prioritization of causal gene-tissue pairs and variants and demonstrates comparable or superior power to existing approaches, regardless of the presence of infinitesimal effects. In the real data analysis of GWAS summary data of 45 cardiometabolic traits and expression/splicing quantitative trait loci (eQTL/sQTL) from 31 tissues, TGVIS is able to improve causal gene prioritization and identifies novel genes that were missed by conventional TWAS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示因果基因-组织对和变异:控制无穷小效应的多变量 TWAS 方法。
全转录组关联研究(TWAS)通常用于优先确定全基因组关联研究(GWAS)中发现的关联的因果基因,并通过多变量 TWAS 方法扩展到确定因果基因。然而,最近的研究表明,多基因性导致的广泛的无限小效应会损害这些方法的性能。在本报告中,我们介绍了一种名为 "组织-基因对、直接因果变异和无穷小效应选择器(TGVIS)"的多变量 TWAS 方法,用于识别组织特异性因果基因和直接因果变异,同时考虑无穷小效应。在模拟实验中,TGVIS 保持了因果基因-组织对和变异的准确优先级,并显示出与现有方法相当或更高的能力,而不管是否存在无限小效应。在对来自 31 个组织的 45 个心脏代谢性状和表达/拼接定量性状位点(eQTL/sQTL)的 GWAS 摘要数据进行真实数据分析时,TGVIS 能够改进因果基因的优先排序,并识别出传统 TWAS 遗漏的新基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Peer Education Intervention Reduced Sexually Transmitted Infections Among Male Tajik Labor Migrants Who Inject Drugs: Results of a Cluster-randomized Controlled Trial. LD-informed deep learning for Alzheimer's gene loci detection using WGS data. Uncovering causal gene-tissue pairs and variants: A multivariable TWAS method controlling for infinitesimal effects. Unified Clinical Vocabulary Embeddings for Advancing Precision Medicine. Deep phenotyping obesity using EHR data: Promise, Challenges, and Future Directions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1