First evidence of off-flavour haloanisole production by dormant fungal spores in drinking water: formation pattern, influencing factors and transcriptome analysis
{"title":"First evidence of off-flavour haloanisole production by dormant fungal spores in drinking water: formation pattern, influencing factors and transcriptome analysis","authors":"Yuxin Shi, Xuelian Ma, Hexiang Yu, Lanbo Xing, Yanzan Meng, Li Yin, Xinyan Zhou","doi":"10.1016/j.jhazmat.2024.136714","DOIUrl":null,"url":null,"abstract":"Fungi are major producers of off-flavour haloanisoles (HAs) in drinking water supply systems. However, evidence of HA production by dormant fungal spores remains unclear. This study investigated the microbial <em>O</em>-methylation of dormant spores from a fungus <em>Aspergillus</em> sp. from drinking water treatment plants. Dormant spores were capable of <em>O</em>-methylating 2,4,6-trichlorophenol (2,4,6-TCP) to produce 2,4,6-trichloroanisole (2,4,6-TCA). A pronounced linear correlation was identified between the precursor load and the 2,4,6-TCA formation capability, with a function lg(y)=0.542lg(x) - 4.28 (R<sup>2</sup> = 0.838). The effects of metal ions on fungal spore <em>O</em>-methylation were multifaceted and highly concentration-dependent. Natural organic matters could inhibit 2,4,6-TCA formation. NH<sub>2</sub>Cl presented higher efficacy than free chlorine in inhibiting spore <em>O</em>-methylation. However, <em>O</em>-methylation inhibition rates were lower than spore inactivation rates, suggesting spores in viable but non-culturable state still possessed partial ability to form 2,4,6-TCA. Transcriptome analysis revealed that 50<!-- --> <!-- -->nM 2,4,6-TCP treatment had no impact on the spore’s transcriptional profile, whereas 1<!-- --> <!-- -->mM Cu<sup>2+</sup> treatment significantly inhibited <em>O</em>-methylation process by down-regulating genes involved in ATP generation. This study provides a first evidence that dormant fungal spores are capable of producing 2,4,6-TCA, raising concerns about the potential off-flavour risk and the development of targeted control strategies in drinking water systems.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"14 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136714","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fungi are major producers of off-flavour haloanisoles (HAs) in drinking water supply systems. However, evidence of HA production by dormant fungal spores remains unclear. This study investigated the microbial O-methylation of dormant spores from a fungus Aspergillus sp. from drinking water treatment plants. Dormant spores were capable of O-methylating 2,4,6-trichlorophenol (2,4,6-TCP) to produce 2,4,6-trichloroanisole (2,4,6-TCA). A pronounced linear correlation was identified between the precursor load and the 2,4,6-TCA formation capability, with a function lg(y)=0.542lg(x) - 4.28 (R2 = 0.838). The effects of metal ions on fungal spore O-methylation were multifaceted and highly concentration-dependent. Natural organic matters could inhibit 2,4,6-TCA formation. NH2Cl presented higher efficacy than free chlorine in inhibiting spore O-methylation. However, O-methylation inhibition rates were lower than spore inactivation rates, suggesting spores in viable but non-culturable state still possessed partial ability to form 2,4,6-TCA. Transcriptome analysis revealed that 50 nM 2,4,6-TCP treatment had no impact on the spore’s transcriptional profile, whereas 1 mM Cu2+ treatment significantly inhibited O-methylation process by down-regulating genes involved in ATP generation. This study provides a first evidence that dormant fungal spores are capable of producing 2,4,6-TCA, raising concerns about the potential off-flavour risk and the development of targeted control strategies in drinking water systems.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.