Protein-Induced Electrochemiluminescence Enhancement of Tetraphenylvinyl Derivatives for Ultrasensitive Bioanalysis

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2024-11-29 DOI:10.1021/acs.analchem.4c04027
Pan Zhou, Xiao-Chun Zhu, Xiao-Feng Wang, Ruo Yuan, Ya-Qin Chai
{"title":"Protein-Induced Electrochemiluminescence Enhancement of Tetraphenylvinyl Derivatives for Ultrasensitive Bioanalysis","authors":"Pan Zhou, Xiao-Chun Zhu, Xiao-Feng Wang, Ruo Yuan, Ya-Qin Chai","doi":"10.1021/acs.analchem.4c04027","DOIUrl":null,"url":null,"abstract":"Herein, the bovine serum albumin (BSA)-loaded tetrakis[4-(4′-cyanophenyl)phenyl]ethane nanoaggregates (NAs) (BSA@TBPE-(CN)<sub>4</sub> NAs) as a novel electrochemiluminescence (ECL) emitter were first prepared, which exhibited superior ECL performance via the newly defined protein-induced ECL enhancement. Impressively, BSA not only restricted the intramolecular motions by its hydrophobic cavity to improve optical radiation for enhancing ECL efficiency but also promoted the electrochemical excitation of BSA@TBPE-(CN)<sub>4</sub> NAs in which amino acid residues of BSA altered the surface states and narrowed the energy gap of BSA@TBPE-(CN)<sub>4</sub> NAs for further boosting the ECL efficiency. Furthermore, the BSA@TBPE-(CN)<sub>4</sub> NAs displayed a more dispersed state due to electrostatic repulsion caused by its considerable negative charges, which was conducive to reacting more fully with coreactants for improving ECL emission. Excitingly, the BSA@TBPE-(CN)<sub>4</sub> NAs exhibited a threefold stronger ECL intensity and a 4.8-fold higher ECL efficiency compared to those of TBPE-(CN)<sub>4</sub> NAs. Thus, as an application, an ECL biosensor was fabricated based on the BSA@TBPE-(CN)<sub>4</sub> NAs as an efficient emitter and the mismatch-fueled three-dimensional (3D) DNA walker as an effective signal amplifier for the rapid and ultrasensitive detection of microRNA-21 with a detection limit (LOD) of 19.1 aM, and it was successfully applied to assess the microRNA-21 expression of human cancer cells MCF-7 and HeLa. This work developed a novel avenue to reasonably synthesize highly efficient organic ECL emitters for motivating their potential application in ultrasensitive biosensing and high-resolution ECL bioimaging.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"6 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04027","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, the bovine serum albumin (BSA)-loaded tetrakis[4-(4′-cyanophenyl)phenyl]ethane nanoaggregates (NAs) (BSA@TBPE-(CN)4 NAs) as a novel electrochemiluminescence (ECL) emitter were first prepared, which exhibited superior ECL performance via the newly defined protein-induced ECL enhancement. Impressively, BSA not only restricted the intramolecular motions by its hydrophobic cavity to improve optical radiation for enhancing ECL efficiency but also promoted the electrochemical excitation of BSA@TBPE-(CN)4 NAs in which amino acid residues of BSA altered the surface states and narrowed the energy gap of BSA@TBPE-(CN)4 NAs for further boosting the ECL efficiency. Furthermore, the BSA@TBPE-(CN)4 NAs displayed a more dispersed state due to electrostatic repulsion caused by its considerable negative charges, which was conducive to reacting more fully with coreactants for improving ECL emission. Excitingly, the BSA@TBPE-(CN)4 NAs exhibited a threefold stronger ECL intensity and a 4.8-fold higher ECL efficiency compared to those of TBPE-(CN)4 NAs. Thus, as an application, an ECL biosensor was fabricated based on the BSA@TBPE-(CN)4 NAs as an efficient emitter and the mismatch-fueled three-dimensional (3D) DNA walker as an effective signal amplifier for the rapid and ultrasensitive detection of microRNA-21 with a detection limit (LOD) of 19.1 aM, and it was successfully applied to assess the microRNA-21 expression of human cancer cells MCF-7 and HeLa. This work developed a novel avenue to reasonably synthesize highly efficient organic ECL emitters for motivating their potential application in ultrasensitive biosensing and high-resolution ECL bioimaging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Investigation for Regulation of a DNA-Programmed Bimetallic Nanozyme and Its Biosensing Applications Hyphenated Centrifugal Microsolid Phase Extraction and Centrifugal Acceleration Thin-Layer Chromatography in a Single Device: An Innovative Approach to Perform Consecutive Extraction and Separation How Machine Learning and Gas Chromatography-Ion Mobility Spectrometry Form an Optimal Team for Benchtop Volatilomics Protein-Induced Electrochemiluminescence Enhancement of Tetraphenylvinyl Derivatives for Ultrasensitive Bioanalysis Ultrahigh Resolving Power Ion Mobility Spectrometry with a Simple Pulser Circuitry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1