{"title":"Do large language models “understand” their knowledge?","authors":"Venkat Venkatasubramanian","doi":"10.1002/aic.18661","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) are often criticized for lacking true “understanding” and the ability to “reason” with their knowledge, being seen merely as autocomplete engines. I suggest that this assessment might be missing a nuanced insight. LLMs do develop a kind of empirical “understanding” that is “geometry”-like, which is adequate for many applications. However, this “geometric” understanding, built from incomplete and noisy data, makes them unreliable, difficult to generalize, and lacking in inference capabilities and explanations. To overcome these limitations, LLMs should be integrated with an “algebraic” representation of knowledge that includes symbolic AI elements used in expert systems. This integration aims to create large knowledge models (LKMs) grounded in first principles that can reason and explain, mimicking human expert capabilities. Furthermore, we need a conceptual breakthrough, such as the transformation from Newtonian mechanics to statistical mechanics, to create a new science of LLMs.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"18 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18661","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Large language models (LLMs) are often criticized for lacking true “understanding” and the ability to “reason” with their knowledge, being seen merely as autocomplete engines. I suggest that this assessment might be missing a nuanced insight. LLMs do develop a kind of empirical “understanding” that is “geometry”-like, which is adequate for many applications. However, this “geometric” understanding, built from incomplete and noisy data, makes them unreliable, difficult to generalize, and lacking in inference capabilities and explanations. To overcome these limitations, LLMs should be integrated with an “algebraic” representation of knowledge that includes symbolic AI elements used in expert systems. This integration aims to create large knowledge models (LKMs) grounded in first principles that can reason and explain, mimicking human expert capabilities. Furthermore, we need a conceptual breakthrough, such as the transformation from Newtonian mechanics to statistical mechanics, to create a new science of LLMs.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.