Data-driven control of echo state-based recurrent neural networks with robust stability guarantees

IF 2.1 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Systems & Control Letters Pub Date : 2024-11-29 DOI:10.1016/j.sysconle.2024.105974
William D’Amico, Alessio La Bella, Marcello Farina
{"title":"Data-driven control of echo state-based recurrent neural networks with robust stability guarantees","authors":"William D’Amico,&nbsp;Alessio La Bella,&nbsp;Marcello Farina","doi":"10.1016/j.sysconle.2024.105974","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we propose a new data-based approach for robust controller design for a rather general class of recurrent neural networks affected by bounded measurement noise. We first identify the model set compatible with available data in a selected model class via set membership (SM). Then, incremental input-to-state stability and desired performances for the closed loop system are enforced robustly to all models in the identified model set via a linear matrix inequality (LMI) optimization problem. Numerical results show the effectiveness of the comprehensive method.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"195 ","pages":"Article 105974"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691124002627","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we propose a new data-based approach for robust controller design for a rather general class of recurrent neural networks affected by bounded measurement noise. We first identify the model set compatible with available data in a selected model class via set membership (SM). Then, incremental input-to-state stability and desired performances for the closed loop system are enforced robustly to all models in the identified model set via a linear matrix inequality (LMI) optimization problem. Numerical results show the effectiveness of the comprehensive method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有鲁棒稳定性保证的基于回波状态的递归神经网络数据驱动控制
在这项工作中,我们提出了一种新的基于数据的鲁棒控制器设计方法,用于受有界测量噪声影响的相当一般的递归神经网络。我们首先通过集合隶属度(SM)确定与选定模型类中可用数据兼容的模型集。然后,通过线性矩阵不等式(LMI)优化问题,将闭环系统的增量输入状态稳定性和期望性能鲁棒地强制到已识别模型集中的所有模型上。数值结果表明了该综合方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
期刊最新文献
Design of low-dimensional controllers for high-dimensional systems The shortest experiment for linear system identification Improved residual mode separation for finite-dimensional control of PDEs: Application to the Euler–Bernoulli beam Finite-dimensional observer-based boundary control for a one-dimensional stochastic heat equation Infinite-horizon BSDE approach for exponential stabilization of discrete-time stochastic system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1