William D’Amico, Alessio La Bella, Marcello Farina
{"title":"Data-driven control of echo state-based recurrent neural networks with robust stability guarantees","authors":"William D’Amico, Alessio La Bella, Marcello Farina","doi":"10.1016/j.sysconle.2024.105974","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we propose a new data-based approach for robust controller design for a rather general class of recurrent neural networks affected by bounded measurement noise. We first identify the model set compatible with available data in a selected model class via set membership (SM). Then, incremental input-to-state stability and desired performances for the closed loop system are enforced robustly to all models in the identified model set via a linear matrix inequality (LMI) optimization problem. Numerical results show the effectiveness of the comprehensive method.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"195 ","pages":"Article 105974"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691124002627","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we propose a new data-based approach for robust controller design for a rather general class of recurrent neural networks affected by bounded measurement noise. We first identify the model set compatible with available data in a selected model class via set membership (SM). Then, incremental input-to-state stability and desired performances for the closed loop system are enforced robustly to all models in the identified model set via a linear matrix inequality (LMI) optimization problem. Numerical results show the effectiveness of the comprehensive method.
期刊介绍:
Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.