Hybrid multivariate time series prediction system fusing transfer entropy and local relative density

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Information Fusion Pub Date : 2024-11-26 DOI:10.1016/j.inffus.2024.102817
Xianfeng Huang , Jianming Zhan , Weiping Ding
{"title":"Hybrid multivariate time series prediction system fusing transfer entropy and local relative density","authors":"Xianfeng Huang ,&nbsp;Jianming Zhan ,&nbsp;Weiping Ding","doi":"10.1016/j.inffus.2024.102817","DOIUrl":null,"url":null,"abstract":"<div><div>Kernel extreme learning machine (KELM), as a natural extension of ELM to kernel learning, has been successfully applied to solve various multivariate time series prediction (MTSP) tasks. Nevertheless, the high-dimensional and nonlinear properties of prediction information against the background of big data bring great challenges to the application of KELM. Recognizing these challenges, this paper develops a KELM-based hybrid MTSP system, aiming to address the effective mining of potential relationships among variables and sample significance. Our system is initiated by devising a feature evaluation mechanism that leverages transfer entropy and directed graph theory, effectively capturing the intricate interactions and intrinsic influences among variables. Next, we introduce a robust local relative density concept to gauge the significance level of different samples in KELM learning, and develop a more efficient KELM. Diverging from previous MTSP methodologies, the developed prediction system is capable of automatically discovering potential relationships between input features and modeling, and simultaneously realizes feature subset selection and modeling learning. Empirical evidence drawn from real-world datasets substantiates the effectiveness and practicality of our proposed system. The results not only validate our approach but also highlight its theoretical and practical superiority over existing state-of-the-art methods.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"117 ","pages":"Article 102817"},"PeriodicalIF":14.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253524005955","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Kernel extreme learning machine (KELM), as a natural extension of ELM to kernel learning, has been successfully applied to solve various multivariate time series prediction (MTSP) tasks. Nevertheless, the high-dimensional and nonlinear properties of prediction information against the background of big data bring great challenges to the application of KELM. Recognizing these challenges, this paper develops a KELM-based hybrid MTSP system, aiming to address the effective mining of potential relationships among variables and sample significance. Our system is initiated by devising a feature evaluation mechanism that leverages transfer entropy and directed graph theory, effectively capturing the intricate interactions and intrinsic influences among variables. Next, we introduce a robust local relative density concept to gauge the significance level of different samples in KELM learning, and develop a more efficient KELM. Diverging from previous MTSP methodologies, the developed prediction system is capable of automatically discovering potential relationships between input features and modeling, and simultaneously realizes feature subset selection and modeling learning. Empirical evidence drawn from real-world datasets substantiates the effectiveness and practicality of our proposed system. The results not only validate our approach but also highlight its theoretical and practical superiority over existing state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
融合传递熵和局部相对密度的混合多元时间序列预测系统
核极限学习机(KELM)作为极限学习机对核学习的自然扩展,已经成功地应用于求解各种多元时间序列预测(MTSP)任务。然而,大数据背景下预测信息的高维和非线性特性给KELM的应用带来了很大的挑战。认识到这些挑战,本文开发了一个基于kelm的混合MTSP系统,旨在有效挖掘变量和样本显著性之间的潜在关系。我们的系统是通过设计一个特征评估机制来启动的,该机制利用了传递熵和有向图理论,有效地捕获了变量之间复杂的相互作用和内在影响。接下来,我们引入了一个鲁棒的局部相对密度概念来衡量KELM学习中不同样本的显著性水平,并开发了一个更有效的KELM。与以往的MTSP方法不同,所开发的预测系统能够自动发现输入特征与建模之间的潜在关系,同时实现特征子集选择和建模学习。来自真实世界数据集的经验证据证实了我们提出的系统的有效性和实用性。结果不仅验证了我们的方法,而且突出了它在理论和实践上优于现有的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
期刊最新文献
Optimizing the environmental design and management of public green spaces: Analyzing urban infrastructure and long-term user experience with a focus on streetlight density in the city of Las Vegas, NV DF-BSFNet: A bilateral synergistic fusion network with novel dynamic flow convolution for robust road extraction KDFuse: A high-level vision task-driven infrared and visible image fusion method based on cross-domain knowledge distillation SelfFed: Self-adaptive Federated Learning with Non-IID data on Heterogeneous Edge Devices for Bias Mitigation and Enhance Training Efficiency DEMO: A Dynamics-Enhanced Learning Model for multi-horizon trajectory prediction in autonomous vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1