Ivan DeAndres-Tame , Ruben Tolosana , Pietro Melzi , Ruben Vera-Rodriguez , Minchul Kim , Christian Rathgeb , Xiaoming Liu , Luis F. Gomez , Aythami Morales , Julian Fierrez , Javier Ortega-Garcia , Zhizhou Zhong , Yuge Huang , Yuxi Mi , Shouhong Ding , Shuigeng Zhou , Shuai He , Lingzhi Fu , Heng Cong , Rongyu Zhang , David Menotti
{"title":"Second FRCSyn-onGoing: Winning solutions and post-challenge analysis to improve face recognition with synthetic data","authors":"Ivan DeAndres-Tame , Ruben Tolosana , Pietro Melzi , Ruben Vera-Rodriguez , Minchul Kim , Christian Rathgeb , Xiaoming Liu , Luis F. Gomez , Aythami Morales , Julian Fierrez , Javier Ortega-Garcia , Zhizhou Zhong , Yuge Huang , Yuxi Mi , Shouhong Ding , Shuigeng Zhou , Shuai He , Lingzhi Fu , Heng Cong , Rongyu Zhang , David Menotti","doi":"10.1016/j.inffus.2025.103099","DOIUrl":null,"url":null,"abstract":"<div><div>Synthetic data is gaining increasing popularity for face recognition technologies, mainly due to the privacy concerns and challenges associated with obtaining real data, including diverse scenarios, quality, and demographic groups, among others. It also offers some advantages over real data, such as the large amount of data that can be generated or the ability to customize it to adapt to specific problem-solving needs. To effectively use such data, face recognition models should also be specifically designed to exploit synthetic data to its fullest potential. In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2<span><math><msup><mrow></mrow><mrow><mtext>nd</mtext></mrow></msup></math></span> FRCSyn-onGoing challenge, based on the 2<span><math><msup><mrow></mrow><mrow><mtext>nd</mtext></mrow></msup></math></span> Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024. This is an ongoing challenge that provides researchers with an accessible platform to benchmark (i) the proposal of novel Generative AI methods and synthetic data, and (ii) novel face recognition systems that are specifically proposed to take advantage of synthetic data. We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition such as demographic bias, domain adaptation, and performance constraints in demanding situations, such as age disparities between training and testing, changes in the pose, or occlusions. Very interesting findings are obtained in this second edition, including a direct comparison with the first one, in which synthetic databases were restricted to DCFace and GANDiffFace.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"120 ","pages":"Article 103099"},"PeriodicalIF":14.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525001721","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic data is gaining increasing popularity for face recognition technologies, mainly due to the privacy concerns and challenges associated with obtaining real data, including diverse scenarios, quality, and demographic groups, among others. It also offers some advantages over real data, such as the large amount of data that can be generated or the ability to customize it to adapt to specific problem-solving needs. To effectively use such data, face recognition models should also be specifically designed to exploit synthetic data to its fullest potential. In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2 FRCSyn-onGoing challenge, based on the 2 Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024. This is an ongoing challenge that provides researchers with an accessible platform to benchmark (i) the proposal of novel Generative AI methods and synthetic data, and (ii) novel face recognition systems that are specifically proposed to take advantage of synthetic data. We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition such as demographic bias, domain adaptation, and performance constraints in demanding situations, such as age disparities between training and testing, changes in the pose, or occlusions. Very interesting findings are obtained in this second edition, including a direct comparison with the first one, in which synthetic databases were restricted to DCFace and GANDiffFace.
期刊介绍:
Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.